Status on the use of scatterometer winds in the HARMONIE model system at MET Norway

Teresa Valkonen
Introduction

Why this research is important?

- Successfull numerical weather forecasting of storms is dependent on an accurate description of atmospheric initial state.
Introduction

Why this research is important?

- Successfull numerical weather forecasting of storms is dependent on an accurate description of atmospheric initial state

What we know and don't know

- Several weather centres improve the model initial state and forecasts with scatterometer data assimilation in global models
- Impact of scatterometer winds in the high-resolution limited area model HARMONIE hasn't been shown
Introduction

Why this research is important?
- Successful numerical weather forecasting of storms is dependent on an accurate description of atmospheric initial state

What we know and don't know
- Several weather centres improve the model initial state and forecasts with scatterometer data assimilation in global models
- Impact of scatterometer winds in the high-resolution limited area model HARMONIE hasn't been shown

Fellowship Project
- HARMONIE model experiments applying ASCAT-A and ASCAT-B data in the data assimilation with different settings
Introduction

Why this research is important?

- Successful numerical weather forecasting of storms is dependent on an accurate description of atmospheric initial state

What we know and don't know

- Several weather centres improve the model initial state and forecasts with scatterometer data assimilation in global models
- Impact of scatterometer winds in the high-resolution limited area model HARMONIE hasn't been shown

Fellowship Project

- HARMONIE model experiments applying ASCAT-A and ASCAT-B data in the data assimilation with different settings

Hypothesis

- ASCAT winds help to achieve more accurate initial state of the NWP model which would improve forecasting of mid-latitude cyclones and polar lows
Experimentation with ASCAT data

ASCAT on board MetOp-A and MetOp-B satellites

ASCAT winds

Model system

Experiments

Analysis

09 March 2015

EUMETSAT Fellow Day

Picture: EUMETSAT
Experimentation with ASCAT data

ASCAT winds

Model system

Experiments

Analysis

Scatterometer wind retrieval leads to 2-4 wind solutions

12.5 km spacing
Experimentation with ASCAT data

- ASCAT on board MetOp-A and MetOp-B satellites
- Scatterometer wind retrieval leads to 2-4 different wind solutions
- The accuracy of ASCAT products is known to be characterised by a wind component RMSE < 2 m/s and bias < 0.5 m/s
Experimentation with ASCAT data

ASCAT winds

- ASCAT on board MetOp-A and MetOp-B satellites
- Scatterometer wind retrieval leads to 2-4 different wind solutions
- The accuracy of ASCAT products is known to be characterised by a wind component RMSE < 2 m/s and bias < 0.5 m/s

Model system

- HARMONIE model system 38h1.2, which is operational at MET Norway/SMHI at the moment
- 3D-Var assimilation of ambiguous ASCAT wind components, observation error 1.5 m/s

Experiments

Analysis
Experimentation with ASCAT data

HARMONIE model system 38h1.2 – operational at MET Norway/SMHI at the moment
Experimentation with ASCAT data

3D-Var assimilation of ambiguous ASCAT wind components
Experimentation with ASCAT data

3D-Var assimilation of ambiguous ASCAT wind components
Experimentation with ASCAT data

- ASCAT on board MetOp-A and MetOp-B satellites
- Scatterometer wind retrieval leads to 2-4 different wind solutions
- The accuracy of ASCAT products is known to be characterised by a wind component RMSE <2 m/s and bias < 0.5 m/s

- HARMONIE model system 38h1.2, which is operational at MET Norway/SMHI at the moment
- 3D-Var assimilation of ambiguous ASCAT wind components, observation error 1.5 m/s
Experimentation with ASCAT data

ASCAT winds
- ASCAT on board MetOp-A and MetOp-B satellites
- Scatterometer wind retrieval leads to 2-4 different wind solutions
- The accuracy of ASCAT products is known to be characterised by a wind component RMSE <2 m/s and bias < 0.5 m/s

Model system
- HARMONIE model system 38h1.2, which is operational at MET Norway/SMHI at the moment
- 3D-Var assimilation of ambiguous ASCAT wind components, observation error 1.5 m/s

Experiments
- ~1-month impact experiment with «default» settings in the operational domain, 100 km thinning
- 1-week thinning experiments: 50 km and 12.5 km thinning
- ~1-month Arctic domain experiment

Analysis
Experimentation with ASCAT data

~1-month impact experiment with «default» settings in the operational domain, 100 km thinning
Experimentation with ASCAT data

ASCAT winds
- ASCAT on board MetOp-A and MetOp-B satellites
- Scatterometer wind retrieval leads to 2-4 different wind solutions
- The accuracy of ASCAT products is known to be characterised by a wind component RMSE <2 m/s and bias < 0.5 m/s

Model system
- HARMONIE model system 38h1.2, which is operational at MET Norway/SMHI at the moment
- 3D-Var assimilation of ambiguous ASCAT wind components, observation error 1.5 m/s

Experiments
- ~1-month impact experiment with «default» settings in the operational domain, 100 km thinning
- 1-week thinning experiments: 50 km and 12.5 km thinning
- ~1-month Arctic domain experiment

Analysis
Experimentation with ASCAT data

1-week thinning experiment: 50 km thinning

ASCAT winds
Model system
Experiments
Analysis
Experimentation with ASCAT data

1-week thinning experiment: 12.5 km thinning
Experimentation with ASCAT data

- ASCAT on board MetOp-A and MetOp-B satellites
- Scatterometer wind retrieval leads to 2-4 different wind solutions
- The accuracy of ASCAT products is known to be characterised by a wind component RMSE <2 m/s and bias < 0.5 m/s

- HARMONIE model system 38h1.2, which is operational at MET Norway/SMHI at the moment
- 3D-Var assimilation of ambiguous ASCAT wind components, observation error 1.5 m/s

- ~1-month impact experiment with «default» settings in the operational domain, 100 km thinning
- 1-week thinning experiments: 50 km and 12.5 km thinning
- ~1-month Arctic domain experiment
Experimentation with ASCAT data

ASCAT winds

Model system

Experiments

Analysis

~1-month Arctic domain experiment

MetCoOp & Arctic domains
Experimentation with ASCAT data

~1-month Arctic domain experiment
Experimentation with ASCAT data

ASCAT winds
- ASCAT on board MetOp-A and MetOp-B satellites
- Scatterometer wind retrieval leads to 2-4 different wind solutions
- The accuracy of ASCAT products is known to be characterised by a wind component RMSE < 2 m/s and bias < 0.5 m/s

Model system
- HARMONIE model system 38h1.2, which is operational at MET Norway/SMHI at the moment
- 3D-Var assimilation of ambiguous ASCAT wind components, observation error 1.5 m/s

Experiments
- ~1-month impact experiment with «default» settings in the operational domain, 100 km thinning
- 1-week data thinning experiments: 50 km and 12.5 km thinning
- ~1-month Arctic domain experiment

Analysis
Experimentation with ASCAT data

ASCAT winds
- ASCAT on board MetOp-A and MetOp-B satellites
- Scatterometer wind retrieval leads to 2-4 different wind solutions
- The accuracy of ASCAT products is known to be characterised by a wind component RMSE <2 m/s and bias < 0.5 m/s

Model system
- HARMONIE model system 38h1.2, which is operational at MET Norway/SMHI at the moment
- 3D-Var assimilation of ambiguous ASCAT wind components, observation error 1.5 m/s

Experiments
- ~1-month impact experiment with «default» settings in the operational domain, 100 km thinning
- 1-week data thinning experiments: 50 km and 12.5 km thinning
- ~1-month Arctic domain experiment

Analysis
- Wind departures from model background and analysis
- Average impact on forecasts over land at surface: default, thinning and Arctic experiments
- Individual case: storm positioning and wind strength
Experimentation with ASCAT data

ASCAT winds
- ASCAT on board MetOp-A and MetOp-B satellites
- Scatterometer wind retrieval leads to 2-4 different wind solutions
- The accuracy of ASCAT products is known to be characterised by a wind component RMSE <2 m/s and bias < 0.5 m/s

Model system
- HARMONIE model system 38h1.2, which is operational at MET Norway/SMHI at the moment
- 3D-Var assimilation of ambiguous ASCAT wind components, observation error 1.5 m/s

Experiments
- ~1-month impact experiment with «default» settings in the operational domain, 100 km thinning
- 1-week data thinning experiments: 50 km and 12.5 km thinning
- ~1-month Arctic domain experiment

Analysis
- Wind departures from model background and analysis
- Average impact on forecasts over land at surface: default, thinning and Arctic experiments
- Individual case: storm positioning and wind strength
Experimentation with ASCAT data

ASCAT winds
- ASCAT on board MetOp-A and MetOp-B satellites
- Scatterometer wind retrieval leads to 2–4 different wind solutions
- The accuracy of ASCAT products is known to be characterised by a wind component RMSE <2 m/s and bias < 0.5 m/s

Model system
- HARMONIE model system 38h1.2, which is operational at MET Norway/SMHI at the moment
- 3D-Var assimilation of ambiguous ASCAT wind components, observation error 1.5 m/s

Experiments
- ~1-month impact experiment with «default» settings in the operational domain, 100 km thinning
- 1-week data thinning experiments: 50 km and 12.5 km thinning
- ~1-month Arctic domain experiment

Analysis
- Wind departures from model background and analysis
- Average impact on forecasts over land at surface: default, thinning and Arctic experiments
- **Individual case: storm positioning and wind strength**
Wind component departures from model background

- **Zonal wind component u: O-B (m/s)**
 - Std: 1.97 m/s
 - Mean: -0.02 m/s

- **Meridional wind component v: O-B (m/s)**
 - Std: 2.02 m/s
 - Mean: -0.21 m/s
Wind component departures from model analysis

- **Zonal wind component u: O-A (m/s)**
 - Std: 1.16 m/s
 - Mean: -0.02 m/s

- **Meridional wind component v: O-A (m/s)**
 - Std: 1.29 m/s
 - Mean: -0.11 m/s
Wind component departures from model background and analysis
Average impact on forecasts over land at surface

Variables
- Mean sea level pressure (MSLP)
- 10-m wind speed

Measures
- Mean error (ME)
- Root-mean-square-error (RMSE)
Average impact on forecasts over land at surface

Mean sea level pressure – errors by forecast length
Average impact on forecasts over land at surface

Mean sea level pressure – errors by forecast length

![Graphs showing mean and RMS errors for different forecast lengths and combinations of CONV, AMSU, and ASCAT.]
Average impact on forecasts over land at surface

Mean sea level pressure – errors of 12-h forecast as timeseries
Average impact on forecasts over land at surface

10-m wind speed – errors by forecast length

MEAN ERROR

2013/03/01

35 stations

Forecast length (h)

10-m wind speed (m/s)

CONV+AMSU+ASCAT

CONV+AMSU
Average impact on forecasts over land at surface

10-m wind speed – errors by forecast length

<table>
<thead>
<tr>
<th>Forecast length (h)</th>
<th>MEAN ERROR</th>
<th>RMS ERROR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CONV+AMSU+ASCAT</td>
<td>CONV+AMSU</td>
</tr>
<tr>
<td>0</td>
<td>-0.5</td>
<td>-2.0</td>
</tr>
<tr>
<td>3</td>
<td>-0.4</td>
<td>-1.8</td>
</tr>
<tr>
<td>6</td>
<td>-0.3</td>
<td>-1.6</td>
</tr>
<tr>
<td>9</td>
<td>-0.2</td>
<td>-1.4</td>
</tr>
<tr>
<td>12</td>
<td>-0.1</td>
<td>-1.2</td>
</tr>
<tr>
<td>15</td>
<td>0.0</td>
<td>-1.0</td>
</tr>
<tr>
<td>18</td>
<td>0.1</td>
<td>-0.8</td>
</tr>
<tr>
<td>21</td>
<td>0.2</td>
<td>-0.6</td>
</tr>
<tr>
<td>24</td>
<td>0.3</td>
<td>-0.4</td>
</tr>
<tr>
<td>27</td>
<td>0.4</td>
<td>-0.2</td>
</tr>
<tr>
<td>30</td>
<td>0.5</td>
<td>0.0</td>
</tr>
<tr>
<td>33</td>
<td>0.6</td>
<td>0.2</td>
</tr>
<tr>
<td>36</td>
<td>0.7</td>
<td>0.4</td>
</tr>
<tr>
<td>39</td>
<td>0.8</td>
<td>0.6</td>
</tr>
<tr>
<td>42</td>
<td>0.9</td>
<td>0.8</td>
</tr>
<tr>
<td>45</td>
<td>1.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>
Average impact on forecasts over land at surface

10-m wind speed – errors of 12-h forecast as timeseries
Average impact on forecasts in thinning experiments

1-week thinning experiments

CONV+AMSU+ ASCAT 100 km thinning

CONV+AMSU+ ASCAT 50 km thinning

CONV+AMSU+ ASCAT 12.5 km thinning
Average impact on forecasts in thinning experiments

1-week thinning experiments – errors by forecast length

![Mean error chart](chart.png)

MEAN ERROR

- **2013/03/01**
- **35 stations**

- **CONV+AMSU+ASCAT 100km**
- **CONV+AMSU**
- **CONV+AMSU+ASCAT 50km**
- **CONV+AMSU+ASCAT 12.5km**

Forecast length (h)

MSLP (hPa)

- Range: -0.5 to 1.0
Average impact on forecasts in thinning experiments

1-week thinning experiments – errors by forecast length

![Graphs showing mean error in MSLP (hPa) and 10-m wind speed (m/s) for different forecast lengths.](image)
Average impact on forecasts over land in the Arctic experiments
Average impact on forecasts over land in the Arctic experiments

![Graph showing mean error over forecast length (h)]
Average impact on forecasts over land in the Arctic experiments

Mean error over land in the Arctic experiments with different forecast lengths (h) for MSLP (hPa) and 10-m wind speed (m/s). The graphs show the mean error for various periods and stations, with lines representing different forecast scenarios.
Individual cases: storm positioning and wind strength

Satellite image and surface observations

Torsvåg station

City of Tromsø
Individual cases: storm positioning and wind strength

MetCoOp REF – CONV+AMSU +12h
Individual cases: storm positioning and wind strength

MetCoOp SCAT – CONV+AMSU+ASCAT +12h
Individual cases: storm positioning and wind strength

Arctic REF – CONV+AMSU +12h
Individual cases: storm positioning and wind strength

Arctic SCAT – CONV+AMSU+ASCAT +12h
Individual cases: storm positioning and wind strength

Timeseries of 12-h forecast at Torsvåg station
Conclusions

Hypothesis

- ASCAT winds help to achieve more accurate initial state of the NWP model which can improve forecasting of mid-latitude cyclones and polar lows
Conclusions

Hypothesis
- ASCAT winds help to achieve more accurate initial state of the NWP model which can improve forecasting of mid-latitude cyclones and polar lows

Fellowship Project
- HARMONIE model experiments applying ASCAT-A and ASCAT-B data in the data assimilation
Conclusions

What we know and don't know

- ASCAT winds help to achieve more accurate initial state of the NWP model which can improve forecasting of mid-latitude cyclones and polar lows
- Impact of ASCAT is small but neutral-positive
- Reduced thinning distance seems to improve results
- We don't know yet how the assimilation works in operational setting (data streams, robustness etc.)
- Impact of shorter assimilation window and revisited background errors is not known

Fellowship Project

- HARMONIE model experiments applying ASCAT-A and ASCAT-B data in the data assimilation

Hypothesis
Conclusions

Hypothesis

- ASCAT winds help to achieve more accurate initial state of the NWP model which can improve forecasting of mid-latitude cyclones and polar lows

Fellowship Project

- HARMONIE model experiments applying ASCAT-A and ASCAT-B data in the data assimilation

What we know and don't know

- Impact of ASCAT is small but neutral-positive
- Reduced thinning distance seems to improve results
- We don't know yet how the assimilation works in operational setting (data streams, robustness etc.)
- Impact of shorter assimilation window and revisited background errors is not known

Why this research is important?

- When implemented into operations, improved forecasts can help to protect life and property
Next steps

Operational implementation

- Planing of implementing ASCAT data assimilation into operations has started in the framework of MetCoOp (MET Norway/SMHI)
Next steps

Operational implementation
- Planing of implementing ASCAT data assimilation into operations has started in the framework of MetCoOp (MET Norway/SMHI)

Further experimentation
- More detailed analysis of the model results available
- Impact of shorter assimilation window
- Impact of background error covariances
Next steps

Operational implementation
- Planing of implementing ASCAT data assimilation into operations has started in the framework of MetCoOp (MET Norway/SMHI)

Further experimentation
- More detailed analysis of the model results available
- Impact of shorter assimilation window
- Impact of background error covariances

Publication(s)
- Start writing a peer-review journal article about «scatterometer data impact in a high-resolution limited area model»
Thank you!

Teresa Valkonen
teresav@met.no