The Meteosat Archive

1995

1978 2000

FORMAT GUIDE No. 6

Cloud Motion Winds (CMW)
OpenMTP Format

Revision 1.1 - January 1998

Meteorological Archive and Retrieval Facility
EUMETSAT - Am Kavalleriesand 31 - D-64295 Darmstadt - Germany
(c) EUMETSAT 1998
Table of Contents

1. **INTRODUCTION** ... 1
 1.1. OVERVIEW .. 1
 1.2. CONTACT POINT .. 1

2. **OVERVIEW** .. 3
 2.1. INTRODUCTION .. 3
 2.2. REPRESENTATION ... 3

3. **PRODUCT STRUCTURE** ... 5

4. **FORMAT AND FIELD DEFINITIONS** ... 6
 4.1. ASCII HEADER ... 7
 4.2. PRODUCT HEADER .. 9
 4.3. CMW DATA .. 10

5. **ADDITIONAL NOTES** .. 14
 5.1. APPLICABILITY .. 14
 5.2. FORMAT HISTORY .. 14
 5.2.1. Evolution of Algorithms ... 14
 5.2.2. Retrieving MOP Data in OpenMTP Format ... 14
 5.3. HEALTH WARNINGS .. 15

1. INTRODUCTION

1.1. Overview

The Cloud Motion Winds (CMW) product contains wind vectors extracted from image triplets by cloud tracking algorithms.

This document describes the OpenMTP format for CMW product retrieval. This is a new format developed for the MTP programme, and represents an enhancement and evolution from the previous IBMMOP format used by the MOP programme up to mid-November 1995.

1.2. Contact Point

All enquiries relating to this document or to the Meteosat Archive in general should be directed to:

MARF Customer Enquiries
EUMETSAT
Am Kavalleriesand 31
64295 Darmstadt
Germany

Telephone: +49 6151 807 377
Telefax: +49 6151 807 379
Electronic mail: archive@eumetsat.de
2. **OVERVIEW**

2.1. **Introduction**

This section provides brief details of the background to the OpenMTP format for CMW products.

The OpenMTP format is a new format developed for the Meteosat Transition Programme (MTP). It represents a progression from the IBM-compatible 'IBMMOP' format used by ESOC during the preceding Meteosat Operational Programme (MOP) which ran until mid-November 1995.

The main differences between the OpenMTP and IBMMOP formats are as follows:

- The machine level representation of bits and bytes used in the OpenMTP format follows the standard used by UNIX / open systems architecture (SUN, HP, SGI ...) machines, whereas the IBMMOP format follows the standard used by IBM machines. The open systems representation uses the IEEE standard for real number representation, and ASCII rather than EBCDIC encoding for character data. It is anticipated that support for this open system representation will provide increased convenience for users.

 The OpenMTP data representation is discussed in section 2.2.

- The OpenMTP format includes an additional ASCII format header which can be easily examined by a user to check the content of a product file.

- The OpenMTP format provides significant extra information for products generated in the MTP era (i.e. since mid-November 1995). This information is stored in fields which are not present in the IBMMOP format.

2.2. **Representation**

This section describes the open system machine representation of the basic data types character, logical, short integer (two byte), integer (four byte), and single-precision floating-point.

The representation is 'big endian' which implies the following layout:

<table>
<thead>
<tr>
<th>Address</th>
<th>a</th>
<th>a+1</th>
<th>a+2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Byte</td>
<td>n</td>
<td>n+1</td>
<td>n+2</td>
</tr>
<tr>
<td>(MSB)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(LSB)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Where byte n is more significant than byte n+1. That is, the most significant byte is located at the lowest address, the least significant byte is located at the highest address. This is in contrast to little endian format (employed by for instance DEC VAXes and IBM PCs) where the least significant byte is located at the smallest address and the most significant bytes are located at the highest address.

In the following, bytes will be numbered from left to right starting with 0. Also bits are numbered from left to right starting with 0. Thus in a two byte integer, for example, the left-most byte will be given the number 0, the right-most byte will be given the number 1, the left-most bit will be given the number 0 and the right-most bit will be given the number 15.
Character type

Character fields are coded in ASCII and occupy 1 byte of storage.

Logical type

Logical fields are coded in single bytes. A byte value of 0 corresponds to 'FALSE' and any other value to 'TRUE', although in line with convention a value of 1 is normally used for 'TRUE' within the OpenMTP format.

Short integer

A short integer is two bytes in length. The short integer is represented in two's complement which means that bit 0 of byte 0 has negative weight (-bit0 * 2**15). Unless otherwise stated, short integer fields should therefore be interpreted as signed values with a range of -32768 ... 32767.

Integer type

A full integer is four bytes in length. It is represented in two's complement which means that bit 0 of byte 0 has negative weight (-bit0 * 2**31).

Single-precision floating point

A single-precision (four byte) floating point number has the following representation:

```
(MSB) (LSB)

<table>
<thead>
<tr>
<th>byte 0</th>
<th>byte 1</th>
<th>byte 2</th>
<th>byte 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>sign</td>
<td>exponent</td>
<td>mantissa</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>(8 bits)</td>
<td>(23 bits)</td>
<td></td>
</tr>
</tbody>
</table>
```

The following three fields describe the single-precision floating-point:

S: The sign of the number. Values 0 or 1 represent positive and negative respectively. One bit (bit 0) is devoted to this field.

E: The exponent of the number, base 2. 8 bits are devoted to this field. The exponent is biased by 127. Thus the range of the exponent is -127 to 128.

M: The fractional part of the number's mantissa, base 2. 23 bits are devoted to this field. The integer part of the mantissa is always a binary 1 for which reason it is implicit in the representation.
3. PRODUCT STRUCTURE

The overall product structure is shown in figure 2. The product consists of a variable number of records of variable length.

Figure 2 CMW Product Structure

The structure contains three distinct components:

- Record 1, ASCII header. This fixed length (542 byte) record contains general information about the file in ASCII format. It enables a user to quickly check the content of the product using a basic editor or print function.

- Record 2, product header. This fixed length (100 byte) record contains binary format information relating to the overall content of the file.

- Records 3 onwards, CMW segment data. Contain the actual wind vectors for each segment along with quality and other control information.

The segment records are hierarchically structured. One record is included for each of the 'M' segments for which there is a CMW result. Segments with no results are not included in the product. The number of segments present is recorded in record 2 to assist automatic parsing of the product structure.

Each segment record in turn contains a 40 byte segment header, followed by one or more results for that segment. Each result consists of a wind vector derived from a specific image channel (Visible, Infra-Red or Water Vapour), so that there may be up to 3 results per segment. Again, the number of results is recorded in the segment header to assist automatic parsing of the product structure. Each result block occupies 256 bytes.

The three types of record making up the CMW format have structures of type 1 to 3 respectively. Detailed descriptions of each structure are provided in section 4 of this document.

It should be noted that the 'records' in this product format are purely logical. The file should in practice be seen as a single structure consisting of a sequence of bytes.
4. FORMAT AND FIELD DEFINITIONS

This section provides detailed format definitions for each of the three structures introduced in the previous section.

The following information is provided for each field:

- Offset from start of structure. (To get the overall offset from the start of the file, this number must be added to the sum of the sizes of the preceding physical records). The offsets are quoted in zero-relative terms.
- Name of the field. An arbitrary but convenient field identifier.
- Description. Describes the field and any special features of its population.
- Type. The data type of the field, i.e. how it is encoded. The valid types are:
 - A<n> - An ASCII string of <n> characters.
 - B<n> - A string of <n> values to be treated as simple bytes.
 - I2 - A 2-byte integer in binary format.
 - I4 - A 4-byte integer in binary format.
 - L1 - A one-byte logical value (TRUE or FALSE).
 - R4 - A single-precision floating-point (4-byte real) number in binary format.

See section 2.2 for detailed descriptions of the encoding of each type in the file.

- Dimension. The number of entries in the field, e.g. 1 for a single value, 10 for an array of 10 values, (10, 10) for a two-dimensional matrix of 10 rows of 10 values, etc. The first index quoted is that which cycles fastest, i.e. the first index cycles once for each step in the second index, etc.

Footnotes to each table provide additional information where necessary.
4.1. ASCII Header

As mentioned in section 3, header record 1 is a fixed length ASCII text block of 542 bytes. The record is divided into a series of text lines each of which has the same format, viz:

```
FIELD_NAME    FIELD_VALUE    <newline>
```

Every field starts with a field name, which describes the content of the field. The field name is padded out to 15 characters total width with spaces, and is left justified. The maximum length of the text is 14 characters, so that character 15 (dividing the field name from the field value) is always a blank.

The field value starts at character 16 of the field and continues until character N-1, where N is the total length of the field. If the value text does not extend to this character, the field will be padded with spaces.

A newline character is inserted at character position N of every field, so that a sensible line-by-line format is displayed when a user lists out the opening bytes of the product file using an editor or print command.

The fields of the ASCII header record are given in the table below. The indicated field lengths are the total lengths and therefore include the 15 characters used for the field name and the terminating newline character. The field names that appear in each field are noted as part of the description of the field.
<table>
<thead>
<tr>
<th>Offset</th>
<th>Name</th>
<th>Description</th>
<th>Type</th>
<th>Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>PROD</td>
<td>Field name = 'Product'. MTP era name of product - set to 'CMW'.</td>
<td>A25</td>
<td>1</td>
</tr>
<tr>
<td>025</td>
<td>FORMAT</td>
<td>Field name = 'Format'. Name of data format, always set to 'OpenMTP'.</td>
<td>A55</td>
<td>1</td>
</tr>
<tr>
<td>080</td>
<td>FVERS</td>
<td>Field name = 'FormatVersion'. Version number of format for this file, initial value is '1'.</td>
<td>A75</td>
<td>1</td>
</tr>
<tr>
<td>155</td>
<td>PLTFRM</td>
<td>Field name = 'Platform'. Satellite name in free text format, e.g. 'Meteosat-5'.</td>
<td>A30</td>
<td>1</td>
</tr>
<tr>
<td>185</td>
<td>DATE</td>
<td>Field name = 'Date'. Nominal date of product in YYYY-MM-DD format, e.g. '1996-11-30'.</td>
<td>A26</td>
<td>1</td>
</tr>
<tr>
<td>211</td>
<td>TIME</td>
<td>Field name = 'NominalTime'. Nominal time of product in HH24:MI format, e.g. 10:59, 22:30.</td>
<td>A21</td>
<td>1</td>
</tr>
<tr>
<td>232</td>
<td>SLOT</td>
<td>Field name = 'SlotNo'. Slot number in day: 1 ... 48.</td>
<td>A19</td>
<td>1</td>
</tr>
<tr>
<td>251</td>
<td>ORDER</td>
<td>Field name = 'Ref'. Unique reference number of the file within the EUMETSAT order handling system, in ORDER-DELIVERY-ENTRY-ITEM format, e.g. 1767-1-2-10.</td>
<td>A47</td>
<td>1</td>
</tr>
<tr>
<td>298</td>
<td>CUST</td>
<td>Field name = 'Source'. Identifier of customer requesting product.</td>
<td>A35</td>
<td>1</td>
</tr>
<tr>
<td>333</td>
<td>PTIME</td>
<td>Field name = 'Time'. Production time in YYYY-MM-DD-HH24:MI format, e.g. 1996-11-30-14:30.</td>
<td>A35</td>
<td>1</td>
</tr>
<tr>
<td>368</td>
<td>SWVERS</td>
<td>Field name = 'SWVersion'. Software Version used for production.</td>
<td>A75</td>
<td>1</td>
</tr>
<tr>
<td>443</td>
<td>FNAME</td>
<td>Field name = 'FileName'. Identifier of data type in ESOC format, provided for compatibility and continuity. For CMW data this will always be set to 'WIMBAY'.</td>
<td>A24</td>
<td>1</td>
</tr>
<tr>
<td>467</td>
<td>CRIGHT</td>
<td>Field name = 'Copyright'. EUMETSAT Copyright notice.</td>
<td>A75</td>
<td>1</td>
</tr>
</tbody>
</table>
4.2. Product Header

This section defines the content of the 100 byte binary product header.

<table>
<thead>
<tr>
<th>Offset</th>
<th>Name</th>
<th>Description</th>
<th>Type</th>
<th>Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>SLOT</td>
<td>Slot number (1-48).</td>
<td>I4</td>
<td>1</td>
</tr>
<tr>
<td>004</td>
<td>TIME</td>
<td>Slot nominal time in HH24MI format, e.g. 1030, 2200.</td>
<td>I4</td>
<td>1</td>
</tr>
<tr>
<td>008</td>
<td>JDAY</td>
<td>Day of the year (eg 123)</td>
<td>I4</td>
<td>1</td>
</tr>
<tr>
<td>012</td>
<td>YEAR</td>
<td>Year, e.g. 1996</td>
<td>I4</td>
<td>1</td>
</tr>
<tr>
<td>016</td>
<td>PLTRM</td>
<td>Spacecraft identification, in Mx or METx format, i.e. 'M5' or 'MET5' for Meteosat-5.</td>
<td>A4</td>
<td>1</td>
</tr>
<tr>
<td>020</td>
<td>Spares</td>
<td>Spares (8 bytes).</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>028</td>
<td>FNAME</td>
<td>Product name, always set to 'CMW' for CMW products.</td>
<td>A4</td>
<td>1</td>
</tr>
<tr>
<td>032</td>
<td>PTIME</td>
<td>Product time.</td>
<td>I4</td>
<td>1</td>
</tr>
<tr>
<td>036</td>
<td>PALG</td>
<td>Product extraction algorithm.</td>
<td>A32</td>
<td>1</td>
</tr>
<tr>
<td>068</td>
<td>PVERS</td>
<td>Version of product (raw, final etc).</td>
<td>I4</td>
<td>1</td>
</tr>
<tr>
<td>072</td>
<td>NSEG</td>
<td>M, the number of segments with results in the product (typically approx. 750)</td>
<td>I4</td>
<td>1</td>
</tr>
<tr>
<td>076</td>
<td>MQCFGLG</td>
<td>MQC done flag</td>
<td>L1</td>
<td>1</td>
</tr>
<tr>
<td>077</td>
<td>Spares</td>
<td>Spares (15 bytes).</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>092</td>
<td>QTOTAL</td>
<td>Combined quality indicator for whole product</td>
<td>I4</td>
<td>1</td>
</tr>
<tr>
<td>096</td>
<td>DIST</td>
<td>Distribution authorization, logical flag set if product was authorised for distribution at time of generation.</td>
<td>L1</td>
<td>1</td>
</tr>
<tr>
<td>097</td>
<td>Spares</td>
<td>Spares (3 bytes).</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>
4.3. CMW Data

The first part of the segment record consists of a 40 byte segment header. Every segment is identified by its row (line) and column number within the overall 80 x 80 segment grid.

<table>
<thead>
<tr>
<th>Offset</th>
<th>Name</th>
<th>Description</th>
<th>Type</th>
<th>Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>SEGLIN</td>
<td>Segment line (1-80)</td>
<td>I4</td>
<td>1</td>
</tr>
<tr>
<td>004</td>
<td>SEGCOL</td>
<td>Segment column (1-80)</td>
<td>I4</td>
<td>1</td>
</tr>
<tr>
<td>008</td>
<td>SELPIX</td>
<td>South East corner line pixel number</td>
<td>I4</td>
<td>1</td>
</tr>
<tr>
<td>012</td>
<td>SECPIX</td>
<td>South East corner column pixel number</td>
<td>I4</td>
<td>1</td>
</tr>
<tr>
<td>016</td>
<td>SELAT</td>
<td>South East corner latitude in degrees.</td>
<td>R4</td>
<td>1</td>
</tr>
<tr>
<td>020</td>
<td>SELON</td>
<td>South East corner longitude in degrees.</td>
<td>R4</td>
<td>1</td>
</tr>
<tr>
<td>024</td>
<td>SHEIGHT</td>
<td>Segment height in pixels (currently 32).</td>
<td>I4</td>
<td>1</td>
</tr>
<tr>
<td>028</td>
<td>SWIDTH</td>
<td>Segment width in pixels (currently 32).</td>
<td>I4</td>
<td>1</td>
</tr>
<tr>
<td>032</td>
<td>NRES</td>
<td>N, the number of CMW results blocks in segment (can be set to 1, 2 or 3)</td>
<td>I4</td>
<td>1</td>
</tr>
<tr>
<td>036</td>
<td>CHDIS</td>
<td>Spectral channel that was disseminated via GTS (1=VIS, 2=IR, 3=WV).</td>
<td>I4</td>
<td>1</td>
</tr>
</tbody>
</table>

The following part of the table describes the structure of the 256-byte results block. This block is repeated N times per segment. Offsets are given from the start of the segment structure for the first block; add 256 or 512 as appropriate to obtain the offsets for the equivalent parameters in the second and third blocks.

<table>
<thead>
<tr>
<th>Offset</th>
<th>Name</th>
<th>Description</th>
<th>Type</th>
<th>Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>040</td>
<td>CHAN</td>
<td>Spectral channel ('VIS', 'IR' or 'WV') from which the wind in this block was derived.</td>
<td>A4</td>
<td>1</td>
</tr>
<tr>
<td>044</td>
<td>CENLAT</td>
<td>Latitude of segment centre</td>
<td>R4</td>
<td>1</td>
</tr>
<tr>
<td>048</td>
<td>CENLON</td>
<td>Longitude of segment centre</td>
<td>R4</td>
<td>1</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
<td>Format</td>
<td>Length</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>--------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>SPEED</td>
<td>Wind speed in m/s</td>
<td>R4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>DIREC</td>
<td>Wind direction in degrees clockwise from North</td>
<td>R4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>WTEMP</td>
<td>Estimated temperature level of measured wind in K.</td>
<td>R4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>WPRES</td>
<td>Estimated pressure level of measured wind in tens of hPa.</td>
<td>R4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>LAT1</td>
<td>Latitude of first component (centre of segment)</td>
<td>R4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>LON1</td>
<td>Longitude of first component (centre of segment)</td>
<td>R4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>SPEED1</td>
<td>Wind speed of first component in m/s.</td>
<td>R4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>DIREC1</td>
<td>Wind direction of first component in degrees clockwise from North</td>
<td>R4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>WTEMP1</td>
<td>Estimated temperature level of first component measured wind in K.</td>
<td>R4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>WPRES1</td>
<td>Estimated pressure level of first component measured wind in tens of hPa.</td>
<td>R4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>LAT2</td>
<td>Latitude of second component (centre of segment)</td>
<td>R4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>LON2</td>
<td>Longitude of second component (centre of segment)</td>
<td>R4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>SPEED2</td>
<td>Wind speed of second component in m/s.</td>
<td>R4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>DIREC2</td>
<td>Wind direction of second component in degrees clockwise from North</td>
<td>R4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>WTEMP2</td>
<td>Estimated temperature level of second component measured wind in K.</td>
<td>R4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>WPRES2</td>
<td>Estimated pressure level of second component measured wind in tens of hPa.</td>
<td>R4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>LOCQ</td>
<td>Location quality indicator (for possible future use)</td>
<td>I4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>SPEEDQ</td>
<td>Wind speed quality indicator</td>
<td>I4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>DIRECQ</td>
<td>Wind direction quality indicator</td>
<td>I4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>WTEMPQ</td>
<td>Wind temperature quality indicator</td>
<td>I4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>WPRESQ</td>
<td>Wind pressure quality indicator</td>
<td>I4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>SPEED1Q</td>
<td>First component wind speed quality indicator</td>
<td>I4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>DIREC1Q</td>
<td>First component wind direction quality indicator</td>
<td>I4</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

The following fields contain parameter quality indicators.
<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>172</td>
<td>WTMP1Q</td>
<td>First component wind temperature quality indicator.</td>
<td></td>
<td>I4</td>
<td>1</td>
</tr>
<tr>
<td>176</td>
<td>WPRS1Q</td>
<td>First component wind pressure quality indicator</td>
<td></td>
<td>I4</td>
<td>1</td>
</tr>
<tr>
<td>180</td>
<td>SPEED2Q</td>
<td>Second component wind speed quality indicator.</td>
<td></td>
<td>I4</td>
<td>1</td>
</tr>
<tr>
<td>184</td>
<td>DIREC2Q</td>
<td>Second component wind direction quality indicator.</td>
<td></td>
<td>I4</td>
<td>1</td>
</tr>
<tr>
<td>188</td>
<td>WTMP2Q</td>
<td>Second component wind temperature quality indicator.</td>
<td></td>
<td>I4</td>
<td>1</td>
</tr>
<tr>
<td>192</td>
<td>WPRS2Q</td>
<td>Second component wind pressure quality indicator</td>
<td></td>
<td>I4</td>
<td>1</td>
</tr>
<tr>
<td>196</td>
<td>Spares</td>
<td>Spares (32 bytes).</td>
<td></td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

The following fields contain quality indicators from the Automatic Quality Control (AQC) process.

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>228</td>
<td>IDREC</td>
<td>Direction consistency indicator.</td>
<td></td>
<td>R4</td>
<td>1</td>
</tr>
<tr>
<td>232</td>
<td>ISPEED</td>
<td>Speed consistency indicator.</td>
<td></td>
<td>R4</td>
<td>1</td>
</tr>
<tr>
<td>236</td>
<td>ICORR</td>
<td>Correlation consistency indicator.</td>
<td></td>
<td>R4</td>
<td>1</td>
</tr>
<tr>
<td>240</td>
<td>IHEIGHT</td>
<td>Height consistency indicator.</td>
<td></td>
<td>R4</td>
<td>1</td>
</tr>
<tr>
<td>244</td>
<td>IFCST</td>
<td>Forecast consistency indicator.</td>
<td></td>
<td>R4</td>
<td>1</td>
</tr>
<tr>
<td>248</td>
<td>ITIME</td>
<td>Temporal consistency indicator.</td>
<td></td>
<td>R4</td>
<td>1</td>
</tr>
<tr>
<td>252</td>
<td>ISPAT</td>
<td>Spatial consistency indicator.</td>
<td></td>
<td>R4</td>
<td>1</td>
</tr>
<tr>
<td>256</td>
<td>IEXTR</td>
<td>Extraction indicator.</td>
<td></td>
<td>R4</td>
<td>1</td>
</tr>
<tr>
<td>260</td>
<td>Spares</td>
<td>Spares (32 bytes).</td>
<td></td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

The following fields contain quality control indicators from the Automatic and Manual Quality Control (AQC & MQC) process.

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>292</td>
<td>AQCREJ</td>
<td>AQC rejected flag</td>
<td></td>
<td>L1</td>
<td>1</td>
</tr>
<tr>
<td>293</td>
<td>MQCREJ</td>
<td>MQC rejected/reinstated flag</td>
<td></td>
<td>L1</td>
<td>1</td>
</tr>
<tr>
<td>294</td>
<td>MQCMOD</td>
<td>MQC data modified flag</td>
<td></td>
<td>L1</td>
<td>1</td>
</tr>
<tr>
<td>295</td>
<td>Spares</td>
<td>Spare (1 byte).</td>
<td></td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>
Notes.

1. The segment data contains three sets of information in sequence: summary values, first component values, and second component values. The quality indicators have a corresponding structure and map onto these data values.

The CMW product is extracted from a triplet of images (i.e. data from three successive half-hourly slots). Within the extraction process, winds are extracted firstly from the first pair of images (slots 1 and 2 of the sequence) and secondly from the second pair (slots 2 and 3). These separate results are those defined as the first component and second component respectively. The overall results are obtained by combining the two pairs, the level of variation between the individual results providing an additional means of consistency checking the extracted winds. This check is needed because wind tracking by correlation is always capable of producing occasional anomalous results.
5. ADDITIONAL NOTES

5.1. Applicability

The format description applies equally to products generated from the Meteosat Operational Programme (1978 – mid-November 1995) and from the Meteosat Transition Programme (mid-November 1995 onwards).

However, the format includes many fields added as an enhancement for MTP, which cannot be fully populated when MOP era data is retrieved as the required underlying data is not available from the archive. See below.

5.2. Format History

The OpenMTP product format is an evolution from the IBMMOP format used for many years by ESOC within the MOP programme. Users who wish to continue with the ESOC format can still retrieve the data in that form. However, the OpenMTP format offers additional data and features which should enhance the value of the product to most users.

5.2.1. Evolution of Algorithms

The algorithms used to generate CMW data for archiving have inevitably evolved over the years. It is not possible to provide a detailed history, but key points to be considered when evaluating older data will be noted here in a future issue of this document.

5.2.2. Retrieving MOP Data in OpenMTP Format

There are many new fields in the OpenMTP format which cannot be populated for MOP era data from the Meteosat Archive. These fields, and the way they are populated when these older data are requested, are tabulated below. (Note that these limits only affect the binary header record and the segment records; the ASCII header is fully populated for all data).

Binary Header Record

<table>
<thead>
<tr>
<th>Offset</th>
<th>Name</th>
<th>Value for MOP Era Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>016</td>
<td>PLTFRM</td>
<td>'N/A'. The original satellite from whose data the product was derived is not recorded in the ESOC archive.</td>
</tr>
<tr>
<td>036</td>
<td>PALG</td>
<td>'MIEC: Information Not Available'. The algorithm history is not available.</td>
</tr>
<tr>
<td>068</td>
<td>PVERS</td>
<td>Always set to 0 for MOP era data. (The version numbers for MTP era data start from 1).</td>
</tr>
<tr>
<td>076</td>
<td>MQCFLG</td>
<td>Set to FALSE (arbitrary).</td>
</tr>
<tr>
<td>092</td>
<td>QTOTAL</td>
<td>Set to 0 (arbitrary).</td>
</tr>
<tr>
<td>096</td>
<td>DIST</td>
<td>Set to FALSE (arbitrary).</td>
</tr>
</tbody>
</table>
CMW Segment Data Records

In the MOP era, winds were only derived and archived for the IR channels; it is only with the start of MTP that Visible and Water Vapour channel winds have been added. When MOP data is retrieved in MTP format, the number of winds per segment is therefore always 1 (if an IR wind is available) or 0 (if no wind is available). As segments with no winds are not included in the output format, all segments in the product will have exactly one IR wind in them when MOP data is retrieved.

<table>
<thead>
<tr>
<th>Offset</th>
<th>Name</th>
<th>Value for MOP Era Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>032</td>
<td>NRES</td>
<td>Always set to 1 (one IR wind per segment in output product).</td>
</tr>
<tr>
<td>036</td>
<td>CHDIS</td>
<td>Always set to 2 (code indicating that IR channel was disseminated).</td>
</tr>
<tr>
<td>040</td>
<td>CHAN</td>
<td>Always set to ‘IR ’ indicating that results block contains an IR wind.</td>
</tr>
<tr>
<td>068 ... 091</td>
<td>LAT1 ...</td>
<td>All component 1 values are set to 0.0 as the separate component values are not archived for MOP era data.</td>
</tr>
<tr>
<td>092 ... 115</td>
<td>LAT2 ...</td>
<td>All component 2 values are set to 0.0 as the separate component values are not archived for MOP era data.</td>
</tr>
<tr>
<td>144 ... 195</td>
<td>LOCQ ...</td>
<td>All parameter quality indicators are set to 0. Information not available for MOP era data.</td>
</tr>
<tr>
<td>228 ... 259</td>
<td>IDIREC ...</td>
<td>All AQC indicators are set to 0.0. Information not available for MOP era data.</td>
</tr>
<tr>
<td>292</td>
<td>AQCREJ</td>
<td>Set to FALSE. Information not available for MOP era data.</td>
</tr>
<tr>
<td>293</td>
<td>MQCREJ</td>
<td>Set to FALSE. Information not available for MOP era data.</td>
</tr>
<tr>
<td>294</td>
<td>MQCMOD</td>
<td>Set to FALSE. Information not available for MOP era data.</td>
</tr>
</tbody>
</table>

5.3. Health Warnings

There are no known format errors.