MONITORING WEATHER AND CLIMATE FROM SPACE

EUMETSAT Headquarters
Darmstadt, Germany

Central Operations Report for the period July to December 2014

Member States

AUSTRIA BELGIUM BULGARIA CROATIA CZECH REPUBLIC DENMARK ESTONIA FINLAND FRANCE GERMANY GREECE HUNGARY ICELAND IRELAND ITALY LATVIA LITHUANIA LUXEMBOURG THE NETHERLANDS NORWAY POLAND PORTUGAL ROMANIA SLOVAK REPUBLIC SLOVENIA SPAIN SWEDEN SWITZERLAND TURKEY UNITED KINGDOM

Cooperating States

SERBIA
Contents

• Introduction
• Performance Reporting covering EUMETSAT’s Services
• Glossary

The Central Operations Reports can be found under ‘Data’ → ‘Service Status’ on www.eumetsat.int

For a full account of service enhancements, please refer to the Product History, also on the Service Status webpage.
Introduction

Welcome to the Central Operations Report for the second half of 2014.

Good levels of availability were achieved for the majority of services during the reporting period.

‘Gap-filling’ has continued for the Meteosat Rapid-Scanning Service (RSS) with the use of the backup satellite, Meteosat-8, providing continuity of imaging during the monthly 48-hour ‘gaps’ in the scheduled Meteosat-9 RSS operations. However, there is a limit to the number of rapid scans which can be performed in the remainder of Meteosat-8’s life. As a result, EUMETSAT has decided to continue the use of Meteosat-8 to fill the monthly 48-hour gaps, but the annual 28-day gap, which runs from approximately mid-January to mid-February, will no longer be filled.

A small but significant change to the Meteosat 0° service from 2 December 2014 onwards was the operational implementation of a daily adjustment to the SEVIRI HRV upper window of Meteosat-10. The adjustment involves a shift westwards at 17:00 UTC and then a complementary shift back to the original position at 00:00 UTC. The purpose of the adjustment is to allow coverage of the Azores for 7 hours, with the acceptable disadvantage of reducing the night-time coverage of the eastern-most countries on the boundaries of the nominal scan window.

The accelerated upgrade of Antenna 1 at the Fucino Ground Station, to restore the operational capability of supporting 3 satellites, was completed in March. Antenna 20 at the Usingen ground station was returned to operational status in August, after the repair which followed the accident at the end of 2013. Both antennae will support the launch of the MSG-4 satellite.
The EUMETSAT HQ's operational infrastructure saw the following evolutions:

- The MSG Image Processing, Product Generation and Data Dissemination chain was made operational in October, following the completion of a project to virtualise the systems and migrate them in EUMETSAT's Technical Infrastructure Building.

- The migration of EUMETCast to the DVB-S2 standard was successfully completed at the end of 2014. This paves the way for the future increase in data associated with future programmes, the first being Copernicus Sentinel-3.

Two operational incidents occurred during the reporting period – one concerning internet-dependent services and the other the transmission of MSG meteorological products to the GTS. Please see slide 8 for further information.

Lastly, the following change in content is introduced in this issue:

- FY-3C: a new chart, replacing the one for the discontinued FY-3A service, which resulted from the end-of-mission declared for that Chinese satellite in March 2014.

Best regards,
Livio Mastroddi
Director of Operations and Services to Users
Performance Reporting: Categories

The charts on the following slides present a summary view of the performance of the services within the categories listed here:

- Meteosat Services
- Metop, Suomi-NPP & NOAA Global Data Services (GDS)
- Regional Data Services (EARS)
- Search and Rescue Support
- Jason-2 OGDR Service
- Third-Party Data Services
- EUMETCast
- The EUMETSAT Data Centre
- EUMETSAT Climate Services
- Helpdesk Service

Several terms with special meaning (e.g. ‘Nominal RCs’) appear in the following slides. A glossary is provided at the end of the report.
Performance Reporting: Conventions

This report presents an overview of EUMETSAT’s operational services in the half-year reporting period by means of the following two indicators:

Service Availability:
- The availability of the operational services to users is measured monthly against the maximum amount of products/data which theoretically could be delivered each calendar month of the reporting period, i.e. from a “perfect” satellite system.

Operational Performance:
- This quantifies how well EUMETSAT has performed operationally with respect to its service targets, taking into account all planned routine operational activities such as instrument calibration and spacecraft manoeuvres, i.e. the intrinsic limitations of the satellite system.

These two indicators are used for Meteosat and Metop services as delivered over the prime dissemination mechanism, namely EUMETCast Europe. Where statistics are available, they are presented in the charts on the following slides. Comments are provided alongside, which identify any significant events or factors (satellite or ground-segment in nature) that have had impact on the service availability and/or operational performance. Currently, only product generation statistics are available for the Meteosat meteorological products.

Note: Events having significant impact on operational services are described on a dedicated slide following this one.
The following event impacted those operational services delivered via the Internet and those dependent on it for the relay of data to EUMETSAT:

Operational Incident 63 – Power Outage of Equipment

13 August 2014: A power outage of an equipment rack in one of EUMETSAT’s computer rooms impacted internet-delivered services and incoming datastreams, such as those for the SAFs and Third-Party services, over a period of approximately 4 hours. The power outage was caused by one item of equipment which short-circuited, tripping the rack’s power supply. The initial diagnosis was hampered by misleading/insufficient monitoring information, and the subsequent attempt to inform users of the problem was held up because the notification service was hosted in the affected rack. Improvements to monitoring tools and approaches to rack configurations are being implemented.

The following event impacted the specified Meteosat Service:

Operational Incident 64 – Outage of MSG Products on the GTS

23-28 October 2014: Following a major upgrade to the MSG processing systems at EUMETSAT HQ, MSG meteorological products destined for the GTS were incorrectly encoded and were thus not accepted by the Regional Telecommunications Hub (RTH) system in Offenbach. One factor was the inability of the validation activity to detect the encoding fault, and another was the inadequacy of the monitoring system to detect the rejection of the data by the RTH. The Incident Review process has thoroughly examined all aspects of the outage and a set of improvement actions has been consolidated.
The following events were of relevance with respect to the Metop, Suomi-NPP & NOAA GDS:

18-19 August: NOAA-EUMETSAT communications link outage
An approximate 20-hour outage of the primary and secondary comms links between NOAA and EUMETSAT prevented any NOAA-19 AMSU, AVHRR, HIRS and MHS data reaching EUMETSAT and thus a corresponding service outage for the Metop, Suomi-NPP & NOAA GDS. The two organisations are evaluating options for improving the availability of the links.

October: Metop-B Out-Of-Plane (OOP) Manoeuvres
Product processing for the following instruments was deactivated for periods of varying length around the burn-times of 13:17:23 – 13:26:00 on 8-October and 11:46:51 to 11:55:14 on the 22-October:
AMSU, ASCAT, ATOVS, GOME-2, GRAS, HIRS, IASI and MHS.

The following event was of relevance with respect to EUMETSAT’s Data Centre Service:

November: Data Centre Archive Facility software release problems
A new major software release was installed on the Archive Facility in the period 11-13 November 2014. Problems arose in the following days, which impacted users’ ability to order online from the archive and subscribe to the Data Centre Service via the Earth Observation Portal. The processing of orders by the system was blocked / delayed. Various corrections were subsequently deployed to resolve the problems. EUMETSAT has conducted an internal assessment of the problematic release and is taking steps to improve its release management methods.
Meteosat Services

This service category comprises the data and products produced with the Meteosat System, i.e. derived from geostationary satellites positioned at longitudes 0°, 9.5°E and 57°E. These satellites nominally support the Full-Earth Scan (FES), Rapid-Scan (RSS) and ‘Indian Ocean Data Coverage’ (IODC) services respectively. A further satellite at 3.5°E provides backup for the FES and RSS services and is used for RSS ‘image gap-filling’ in the rapid-scan pauses of Meteosat-9, when operational constraints permit.

The individual services addressed in this section are as follows:

- Meteosat ‘Full-Earth Scan’ image data acquired at 0° and 57°E
- Meteosat ‘Rapid Scan’ image data acquired at 9.5°E
- Meteorological products derived from that image data
- Data Collection and Retransmission (the DCP service)
Prime satellite supporting the service is Meteosat-10, with Meteosat-8 as backup.

Service Availability and Operational Performance are measured on the basis of nominal Level 1.5 Repeat Cycles (RCs) disseminated ‘on-time’ via EUMETCast Europe. See slide 7 for an explanation of the two indicators.

Events which impacted availability:
- Aug: 14 RCs impacted by Ground Segment (GS) problems
- Sept: Eclipse effects impacted 20 RCs
- Oct: Eclipse effects and sun-satellite colinearity impacted 19 RCs, and a station-keeping manoeuvre impacted a further 6 RCs
- Nov: GS (network) problems impacted 26 RCs and an attitude slew manoeuvre impacted a further 8 RCs
- Dec: 18 RCs impacted by a GS (facility operation) problem

Meteorological products derived from the Full-Earth Scan (FES) images produced nominally by Meteosat-10 at 0°.

Performance of this service is still currently measured in terms of the number of meteorological products which have been generated at source in EUMETSAT, as a percentage of those scheduled.

Events which impacted availability:
- Dec: Degraded image data RCs (see left box) reduced the number of meteorological products generated.

(Note that Incident 64 impacted the transmission of met. products to the GTS, but not product generation itself - see slide 8)
Meteosat-7 supports the IODC service.

Service Availability and Operational Performance are measured on the basis of perfect formats disseminated 'on-time' via EUMETCast Europe. See slide 7 for an explanation of the two indicators.

Events which impacted availability:

August-Sept: Service Availability reduced by up to 5 slots per day during the autumn eclipse season, which lasted approximately 8 weeks.

Meteorological products derived from Full-Earth Scan images produced by Meteosat-7 at 57°E.

Performance of this service is still currently measured in terms of the number of meteorological products which have been generated at source in EUMETSAT, as a percentage of those scheduled.

Events which impacted availability:

Sept: Degraded quality of some HWW products due to image quality related to satellite's high inclination.

Nov: Various minor ground segment problems gave some noticeable accumulative impact on quality of generated products.
Prime satellite supporting the service is Meteosat-9, with Meteosat-8 as backup, when available.

For more info on RSS: www.eumetsat.int → Rapid-Scanning Service.

Service Availability and Operational Performance are measured on the basis of nominal Level 1.5 Repeat Cycles (RCs) disseminated ‘on-time’ via EUMETCast Europe. See slide 7 for an explanation of the two indicators.

Events which impacted availability:
September: Eclipse effects impacted 34 RCs and image-processing shortcomings impacted a further 70 RCs
October: Fuel migration on Met-9 impacted 42 RCs

Note: Met-8 was used for the 48-hour ‘gap-filling’ activity July – December, thus maximising service availability.

Meteorological products derived from Rapid-Scanning images produced at 9.5°E.
Performance of this service is still currently measured in terms of the number of meteorological products which have been generated at source in EUMETSAT, as a percentage of those scheduled.

Events which impacted availability:
None significant.
Data Collection and Retransmission operations at 0° utilise the international and regional DCP channels of the satellite supporting the service (nominally Meteosat-10).

The chart shows the availability of the 0° DCP service. It is measured in terms of the number of hourly reference DCP messages on all operational regional channels which have been successfully received back by EUMETSAT, as a percentage of those sent.

(Note that the availability of the 4 DCP channels supported by Meteosat-7 as part of the Indian Ocean Tsunami Warning System (IOTWS) is not included)

For information concerning the geographical distribution of registered DCPs, please see the next slide.

Events Which Impacted DCP Channel Availability:
None significant.

Note: Some DCP messages continue to be corrupted/lost due to interference on the satellite link. It is not expected that the cause will be resolvable. EUMETSAT continues to monitor the situation.
As of the end of December 2014:

1233 registered Data Collection Platforms (DCPs), belonging to 128 operators, deployed amongst the 74 countries shown in the table.

Out of the total number of registered DCPs, there were 587 units in active operation.

Larger numbers of DCPs are highlighted with darker colours.

Table entries in green = new.
Country name in red = DCPs no longer registered.

↑↓ = indicates an increase /decrease in DCPs registered, compared with previous report.

Geographical Distribution of DCPs

<table>
<thead>
<tr>
<th>DCPs</th>
<th>Country</th>
<th>DCPs</th>
<th>Country</th>
<th>DCPs</th>
<th>Country</th>
<th>DCPs</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Albania</td>
<td>2</td>
<td>Armenia</td>
<td>19</td>
<td>Mali</td>
<td>2</td>
<td>Togo</td>
</tr>
<tr>
<td>50</td>
<td>Algeria</td>
<td>1</td>
<td>Finland</td>
<td>1</td>
<td>Malta</td>
<td>1</td>
<td>Turkey</td>
</tr>
<tr>
<td>13</td>
<td>Angola</td>
<td>1</td>
<td>Gambia</td>
<td>4</td>
<td>Mauritania</td>
<td>4</td>
<td>Mauritius</td>
</tr>
<tr>
<td>123</td>
<td>Botswana</td>
<td>1</td>
<td>Gibraltar</td>
<td>23</td>
<td>Mozambique</td>
<td>2</td>
<td>Myanmar</td>
</tr>
<tr>
<td>11</td>
<td>Benin</td>
<td>1</td>
<td>Greece</td>
<td>19</td>
<td>Niger</td>
<td>1</td>
<td>Pakistan</td>
</tr>
<tr>
<td>14</td>
<td>Belize</td>
<td>1</td>
<td>Guinea</td>
<td>17</td>
<td>Nigeria</td>
<td>10</td>
<td>Oman</td>
</tr>
<tr>
<td>1</td>
<td>Burkina Faso</td>
<td>1</td>
<td>Indonesia</td>
<td>4</td>
<td>Pakistan</td>
<td>1</td>
<td>Yemen</td>
</tr>
<tr>
<td>5</td>
<td>Cambodia</td>
<td>1</td>
<td>Iraq</td>
<td>3</td>
<td>Philippines</td>
<td>1</td>
<td>Republic of Moldova</td>
</tr>
<tr>
<td>2</td>
<td>Cap Verde</td>
<td>8</td>
<td>Ireland</td>
<td>11</td>
<td>Republic of Seychelles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>Central African Republic</td>
<td>3</td>
<td>Ivory Coast</td>
<td>11</td>
<td>Romania</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Chad</td>
<td>3</td>
<td>Kenya</td>
<td>7</td>
<td>Senegal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Congo</td>
<td>6</td>
<td>Lesotho</td>
<td>3</td>
<td>Spain</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Croatia</td>
<td>11</td>
<td>Libya</td>
<td>124</td>
<td>Sri Lanka</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Cyprus</td>
<td>6</td>
<td>Madagascar</td>
<td>2</td>
<td>Swaziland</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Djibouti</td>
<td>0</td>
<td>Malawi</td>
<td>10</td>
<td>Tanzania</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Egypt</td>
<td>3</td>
<td>Maldives</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
These services refer to the dissemination of global data and products produced as part of the Initial Joint Polar System (IJPS) and the Joint Transition Activities (JTA) agreements between EUMETSAT and NOAA. The JTA is an interim agreement, providing continuity between the Initial Joint Polar System (IJPS) and future Joint Polar System (JPS).

The services provide Level 0, 1 and 2 products derived from the data from instruments onboard the satellites Metop-A & -B, Suomi-NPP and NOAA-19, as summarised in the following table:

<table>
<thead>
<tr>
<th>Level 0</th>
<th>A-DCS</th>
<th>AMSU</th>
<th>ASCAT</th>
<th>ATOVS</th>
<th>AVHRR</th>
<th>GOME-2</th>
<th>GRAS</th>
<th>HIRS</th>
<th>IASI</th>
<th>MHS</th>
<th>SEM</th>
<th>ATMS & CrIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mx2 (1)</td>
<td>-</td>
<td>Mx2</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Level 1</th>
<th>A-DCS</th>
<th>AMSU</th>
<th>ASCAT</th>
<th>ATOVS</th>
<th>AVHRR</th>
<th>GOME-2</th>
<th>GRAS</th>
<th>HIRS</th>
<th>IASI</th>
<th>MHS</th>
<th>SEM</th>
<th>ATMS & CrIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>Mx2, N</td>
<td>Mx2</td>
<td>-</td>
<td>Mx2, N</td>
<td>Mx2 (2)</td>
<td>Mx2</td>
<td>Mx2, N</td>
<td>Mx2</td>
<td>Mx2, N</td>
<td>-</td>
<td>SDR</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Level 2</th>
<th>A-DCS</th>
<th>AMSU</th>
<th>ASCAT</th>
<th>ATOVS</th>
<th>AVHRR</th>
<th>GOME-2</th>
<th>GRAS</th>
<th>HIRS</th>
<th>IASI</th>
<th>MHS</th>
<th>SEM</th>
<th>ATMS & CrIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Mx2, N</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Mx2</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Legend: ‘Mx2’ = Metop-B (prime) and Metop-A (secondary) - dual data & products, with the following exceptions:

1. Due to reduced capability of A-DCS on Metop-B, Metop-A provides the prime Argos-3 A-DCS service (Metop-B provides Argos-2 mode).

2. GOME-2 Tandem operations: Metop-A instrument has swath width of 960 km, Metop-B’s has full width of 1920 km.

‘N’ = Data and products from the AMSU, AVHRR, HIRS and MHS instruments onboard NOAA-19.

‘SDR’ = Sensor Data Records from the ATMS and CrIS instruments onboard Suomi-NPP.

The charts on the following slides show the month-by-month availability of the products, identifying any significant events which impacted the service.
Metop, Suomi-NPP & NOAA GDS: Definition of Availability

Unless otherwise indicated in the availability slides, the monthly figures are those for ‘timely availability’, where ‘timely’ is used to mean the following:

- Levels 0 & 1: Available within 2 hours 15 minutes of sensing (Metop and NOAA)
- Level 2: Available within 3 hours of sensing (Metop and NOAA)
- SDRs: Currently: available within 2 hours of sensing, will be refined (Suomi-NPP)

The above timeliness targets are those originally specified for the Metop and NOAA-19 data and delivery is currently measured against them. The Level 0 and 1 targets for the primary Metop are easily met since the introduction of (1) the Antarctic Data Acquisition (ADA) service which improved the timeliness of the data, and (2) the multiplexed data transfer between the Svalbard Ground Station and Darmstadt which gave a further timeliness improvement for the data of both Metops.

Availability figures are based on the following:

- Level 0: Production statistics from EUMETSAT’s EPS Product Generation Facility
- Levels 1 & 2: Reception statistics from EUMETSAT’s reference EUMETCast User Station

The next slide shows the profile of Metop-B passes acquired via the ADA service, which relays half-orbits’ worth of data for most of the 14 to 15 passes possible per day, delivering the first half of each orbit approximately 50 minutes earlier than that via Svalbard.

On slide 19 onwards, service availability and operational performance are presented for the data (mostly delivering Level 1) from instruments onboard Metop-A, Metop-B, N19 and Suomi-NPP. Please see slide 7 for explanation of the two metrics.
Data from the primary Metop satellite (currently Metop-B) is acquired at NOAA-NSF’s ground station on McMurdo Sound in Antarctica and routed to EUMETSAT HQ. This acquisition complements that of Svalbard, and allows the data of the first half of each orbit to be processed and disseminated earlier, thus improving data timeliness of Metop-based products.

The chart shows the average daily passes per month that have been successfully acquired at McMurdo and relayed to Darmstadt since the system was established in early 2011.

The daily average number of passes of Metop-B is 14.2. The majority of them have been acquired since the start of the operational phase in 2014, with only the exception of an average of ~12.5 in August 2014, which resulted from a power outage at the McMurdo station from 20 – 23 Aug 2014, exacerbated by bad weather conditions.
Metop A & B carry instruments for supporting the Argos Advanced Data Collection System (A-DCS). Environmental data is transmitted by measurement platforms on land or sea, or in the atmosphere, and this is relayed via the Metop satellites and EUMETSAT to CLS in Toulouse, in accordance with a cooperation agreement with CNES.

Metop-A provides the prime Argos-3 A-DCS service, with Metop-B providing just Argos-2 mode, due to the reduced capability of A-DCS onboard that satellite.

Events which impacted availability:
None significant.

<table>
<thead>
<tr>
<th>Month</th>
<th>Metop-A</th>
<th>Metop-B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jul</td>
<td>90%</td>
<td>90%</td>
</tr>
<tr>
<td>Aug</td>
<td>92%</td>
<td>92%</td>
</tr>
<tr>
<td>Sep</td>
<td>94%</td>
<td>94%</td>
</tr>
<tr>
<td>Oct</td>
<td>96%</td>
<td>96%</td>
</tr>
<tr>
<td>Nov</td>
<td>98%</td>
<td>98%</td>
</tr>
<tr>
<td>Dec</td>
<td>100%</td>
<td>100%</td>
</tr>
</tbody>
</table>
The Advanced Microwave Sounding Unit (AMSU) is a 15-channel microwave radiometer supplied by NOAA which provides information on atmospheric temperature profiles.

Level 1B products are derived from the data generated by the instruments onboard the Metop-A, Metop-B and NOAA-19 satellites.

Events which impacted availability:
18-19 Aug: N19: NOAA-EUM comms link outage
8 & 22 Oct: Metop-B: Out-Of-Plane (OOP) manoeuvres

(see slide 9 for further info on above events)

Notes: (1) Metop-A's AMSU: channels 3 & 8: out of specification with an increasing NEdT trend, but both are still currently usable for higher-level products; channel 7 has failed completely.
(2) Metop-B's AMSU: all channels well within specification
(3) NOAA-19’s AMSU: channels 7 & 8: out of specification but the data is still considered usable for the time-being
The Advanced Scatterometer (ASCAT) is a C-band radar on the Metop satellites which measures normalised backscatter from the Earth’s surface. The prime objective of ASCAT is to measure wind speed and direction over the oceans, as an input to NWP models. ASCAT data is also used to extract information on soil moisture, sea-ice extent and permafrost boundary. EUMETSAT disseminates sampled Level 1B data from both Metop-A and Metop-B over EUMETCast and full resolution is available from the Data Centre on request.

Performance of the Level 1B service is measured in terms of the timely availability of the ‘SZO’ and ‘SZR’ products (swath grid sampling resolutions of 25 and 12.5 km respectively) on the EUMETCast reference user station.

Events which impacted availability:

8-August: Metop-B: 6-hour instrument outage due to SEU

Sept-Dec: Metop-A: extensive calibration campaign (impacted ~0.4% of L1B daily)

8 & 22 Oct: Metop-B: Out-Of-Plane (OOP) manoeuvres (see slide 9)
ATOVS Level 2 product processing transforms the calibrated radiance measurements from the AMSU-A, MHS and HIRS instruments (onboard Metop and NOAA-19 satellites) into information on the vertical distribution of atmosphere state parameters, on cloud and surface parameters and total atmosphere contents. All the parameters derived are assembled into one ATOVS L2 sounding product for each satellite.

Performance of the Level 2 service is measured in terms of the timely availability of the BUFR-encoded products received on the EUMETCast reference user station (US).

Events which impacted availability:

18-19 Aug: N19: NOAA-EUM comms link outage
8 & 22 Oct: Metop-B: Out-Of-Plane (OOP) manoeuvres

(see slide 9 for further info on above events)

Note: Metop-A’s AMSU channel 7 has failed and is thus no longer used for ATOVS L2 product processing.
The Advanced Very High Resolution Radiometer (AVHRR) is a multi-spectral imaging instrument provided by NOAA which produces global cloud imagery and information on land and sea surfaces. Level 1B products are derived from the data generated by the instruments onboard the Metop and NOAA-19 satellites.

Events which impacted availability:

18-19 Aug: N19: NOAA-EUM comms link outage (see slide 9)
The Global Ozone Monitoring Experiment-2 (GOME-2) is a scanning spectrometer used to measure profiles and total columns of atmospheric ozone and other trace gases.

Events which impacted availability:

8 & 22 Oct: Metop-B: Out-Of-Plane (OOP) manoeuvres (see slide 9)

GOME-2 on Metop-B suffers degradation of throughput similar, but not identical, to that seen on Metop-A. The performance of the GOME-2 instruments on Metop-A and Metop-B and the evolution of their degradation will continue to be monitored.

See the ‘Product Quality Monitoring Reports’ via dedicated links on the ‘Service Status’ page of www.eumetsat.int for further performance information. The GOME-2 Newsletter can be found under either of the two report sections.
The GNSS Receiver for Atmospheric Sounding (GRAS) instruments provide information on atmospheric profiles using radio occultation of GPS signals from typically between 28 and 30 GPS navigation satellites in operational use.

The chart shows for each month:

1. the total numbers of GRAS Level 1B occultations (plus geolocation and quality flags) from Metop-A and Metop-B disseminated via EUMETCast
2. the daily average number of occultations from each Metop provided to users (numbers in italics)

Note that all occultations produced are disseminated (with appropriate quality flags, including those produced during manoeuvres and recovery from anomalies).

Events which impacted availability:

8 & 22 Oct: Metop-B: Out-Of-Plane (OOP) manoeuvres

(note: in-plane manoeuvres were also conducted on 23 July (Metop-B) and on 29-Oct (Metop-A), but these had less impact).

In addition to the outages associated with Metop manoeuvres, GRAS L1B data is flagged ‘degraded quality’ for a fixed 4 hours following any anomaly, regardless of the actual level.
The High Resolution Infrared Radiation Sounder (HIRS) measures incident radiation using 19 infrared channels and 1 visible channel, providing information on the atmosphere’s vertical temperature profile and water vapour from the Earth’s surface to an altitude of about 40 km. Level 1B products are derived from the data generated by the instruments onboard both Metop-A/B and NOAA-19 satellites.

Events which impacted availability:
8 & 22 Oct: Metop-B: Out-Of-Plane (OOP) manoeuvres
18-19 Aug: N19: NOAA-EUM comms link outage
(see slide 9 for further info on above events)

Notes: (1) Metop-A’s HIRS: all channels within specification
(2) Metop-B’s HIRS: all channels within specification
(3) NOAA-19’s HIRS: channels 1-12: close to, or out of specification, but the data is still considered usable for the time-being.
The Infrared Atmospheric Sounding Interferometer (IASI) measures the spectrum of infrared radiation in 6000 channels, providing information on atmospheric profiles of temperature, water vapour and trace gases, as well as surface temperature, surface emissivity and cloud characteristics.

Events which impacted availability:

8-12 Sept: Metop-A: instrument decontamination (note that a problem in recovery from it impacted both service availability and operational performance)

8 & 22 Oct: Metop-B: Out-Of-Plane (OOP) manoeuvres (see slide 18)

10-11 Dec: Metop-A and Metop-B: external calibrations with moon intrusion

Note that external calibrations are performed typically on a monthly basis and these reduce the availability of Level 1 / Level 2 data (relative to that of Level 0) by approximately 0.5 to 0.6% of the scheduled availability.
The Microwave Humidity Sounder (MHS) is a 5-channel microwave radiometer providing information on atmospheric humidity profiles primarily, but also cloud liquid water content and precipitation.

Level 1B products are derived from the data generated by the instruments onboard both Metop-A/B and NOAA-19 satellites.

Events which impacted availability:

10 July: Metop-B: MHS instrument fault mode resulted in ~9-hour outage. Suspected as being caused by an SEU.

18-19 Aug: N19: NOAA-EUM comms link outage

8 & 22 Oct: Metop-B: Out-Of-Plane (OOP) manoeuvres

(see slide 9 for further info on the last two events above)

Notes:
- NOAA-19’s MHS instrument’s channel 3 remains out of spec
- Metop-A and Metop-B instruments: all channels within specification
The Space Environment Monitor (SEM) consists of a pair of instruments on each Metop satellite which provide data to determine the intensity of the Earth’s radiation belts and the flux of charged particles at the satellite’s orbiting altitude.

Level 0 data (consisting of the SEM instrument source packets in EPS native format) is provided to NOAA via dedicated terrestrial line.

Events which impacted availability:

None significant.
The Global Data Service has been extended in May 2014 to include data (Sensor Data Records) from the ATMS and CrIS instruments (Advanced Technology Microwave Sounder and Cross-track Infrared Sounder respectively) onboard NASA-NOAA’s Suomi NPP (National Polar-orbiting Partnership) satellite.

Currently, it is not possible to provide service availability statistics for data from the two instruments individually, but they are expected to be available in the report for the next half-year.

Events which impacted availability:

20-23 Oct: A NOAA network outage impacted the Suomi-NPP SDR dataflow
Regional Data Services

The Regional Data Services (RDS) are based on direct acquisition of data from Metop and NOAA satellites by a network of HRPT stations, known as EARS (EUMETSAT Advanced Retransmission System). At each station, an EARS node processes the data locally and then relays it on to EUMETSAT for very timely distribution to the user community via EUMETCast and the GTS.

The RDS comprises the following services:

- EARS-ASCAT
- EARS-ATMS
- EARS-ATOVS
- EARS-AVHRR
- EARS-CrIS
- EARS-IASI
- EARS-NWC

Service performance is measured in terms of the availability of the data on the EUMETCast user reception stations being within 30 minutes of the instrument’s observations, unless specified otherwise in the following slides.

See EUMETSAT’s document TD14, available from the ‘Regional Data Services’ page of EUMETSAT’s website (see ‘Related Links’) for more information generally on the various EARS services, including which HRPT stations contribute to each of the services.
Regional Data Services → EARS-ASCAT

This service provides products derived from the data produced by the ASCAT instrument onboard Metop-A and Metop-B.

Level 1 data is produced by the EARS system, and then forwarded to KNMI (Netherlands) for the generation of Level 2 data. Availability shown on the chart is that of the Level 2 data received by users (relative to scheduled passes).

Events which impacted availability:
December: Muscat station outage from 8-Dec onwards
Regional Data Services → EARS-ATMS

This service provides SDRs derived from the data produced by the ATMS (Advanced Technology Microwave Sounder) instrument onboard NASA-NOAA’s Suomi NPP satellite.

Availability shown on the chart is that of the BUFR-formatted SDRs received by users (relative to scheduled passes).

Events which impacted availability:

July: The new VIIRS dataflow (availability not yet presented in this report) continued to impact the timeliness of ATMS data until the problem was resolved in July by improved network load-balancing.
This service provides ATOVS products covering data-sparse areas, derived from data received by the HRPT stations from the following satellites (listed in order of priority): Metop-B, Metop-A, NOAA’s N19, N16 (until 9-June), N18 and N15. Note that Metop’s AHRPT partial coverage data is used.

The availability target shown in red on the chart is that for the products received by users (relative to scheduled ground station passes) and covers Levels 1A, 1C and 1D products.

Note the less-stringent timeliness target for data from the following HRPT stations:
- Edmonton, Gander, Miami & Monterey: 45 mins.
- Ewa Beach: 2 hours

Events which impacted availability:
December: (1) Muscat antenna failure from 8 December onwards
(2) Edmonton and Gander station problems 24-29 December

General Issue: Problems with the HRPT transponder onboard NOAA’s N15 satellite impacts the operation of the ATOVS service generally, resulting in fewer products overall.
This service provides data from the AVHRR instruments onboard NOAA-19 and the Metop satellites. AHRPT partial coverage data and FDES are used from the Metops.

Availability shown on the chart is for Level 0 data received by users (relative to scheduled regional passes). Note that no higher-level products are generated.

Events which impacted availability:

August: Kangerlussuaq comms problem
September: Svalbard antenna problem
This service provides SDRs derived from the data produced by the CrIS (Cross-track Infrared Sounder) instrument onboard NASA-NOAA’s Suomi NPP satellite.

Availability shown on the chart is that of the BUFR-formatted SDRs received by users (relative to scheduled passes).

Events which impacted availability:

July: The new VIIRS dataflow (availability not yet presented in this report) continued to impact the timeliness of ATMS data until the problem was resolved in July by improved network load-balancing.
This service provides products derived from the data produced by the IASI instrument onboard the Metop-A and B satellites. Availability shown on the chart is that of the Level 1C data received by users (relative to scheduled passes). The products comprise calibrated and geolocated IASI observations containing both 300 Principle Component Scores and 500 original IASI channels, cloud/scene analysis information, BUFR formatted, suitable for nowcasting applications.

Events which impacted availability:
August: Kangerlussuaq comms problem
8-12 Sept: Metop-A instrument decontamination
Oct - Nov: Kangerlussuaq antenna problem

General Issue: Incomplete passes in the HRPT zone cannot be processed, hence the marginally lower availability of products compared to the passes.

Note: As of 15-October, number of IASI channels increased from 366 to 500.
This service delivers Level 2 cloud products derived from data produced by the AVHRR instruments onboard Metop-B and NOAA-19. The service via EUMETCast Europe commenced on 24 April.

Three types of product are delivered:
• Cloud-Top Temperature and Height (CTTH)
• Cloud Mask (CM)
• Cloud Type (CT)

Availability shown on the chart is currently only that of the CTTH products received by users (relative to scheduled passes).

Events which impacted availability:
None significant.
EUMETSAT supports the Cospas-Sarsat System for Search and Rescue (SAR) by flying transponders onboard its MSG and Metop satellites. The Cospas-Sarsat System is designed to provide distress alert and location data to assist SAR operations, using a constellation of geostationary and low-altitude Earth-orbiting satellites to relay signals from distress beacons to ground terminals. More information concerning the system can be found on www.cospas-sarsat.org.

MSG: Meteosat-9 and 10 have provided nominal SAR coverage for the duration of the reporting period. Meteosat-8’s SAR remained off during the reporting period.

Metop: Both satellites, Metop-A and Metop-B, have provided full-time SAR support during the reporting period.
This service delivers the ‘Operation Geophysical Data Record’ products, derived from the altimetry data acquired from the Jason-2 satellite.

Jason-2 is the second satellite of the space segment of the Ocean Surface Topography Mission (OSTM), a cooperation between EUMETSAT, NOAA, CNES and NASA. EUMETSAT and NOAA process the data from the Jason-2 satellite in near real-time and archive and disseminate the products.

The chart on the next slide shows the availability of the products within timeliness constraints of 3 hours and 5 hours from the time of sensing.
The chart shows the availability of the Jason-2 near real-time Operational Geophysical Data Record products disseminated via EUMETCast.

The target figure of 95% applies to the availability of data received on EUMETCast reception stations with a timeliness of 5 hours. The further target of 75% is for the more demanding objective of 3-hour timeliness.

Events which impacted availability:
December: 23-hour outage of AMR (Advanced Microwave Radiometer) measurements impacted product quality. Resolved by an instrument reset.

(In general, redumps are taken at next visibility (or by other ground station) in cases of problematic passes and connection problems – this ensures minimisation of data loss, although some impact on timeliness occurs)
In addition to its own satellite data and meteorological products, EUMETSAT also distributes data and products from partner organisations as part of an international cooperation.

Image data from the following geostationary satellites is made available via EUMETCast, Direct Dissemination and the Internet:

- NOAA’s GOES-13 (‘GOES-East’), at 75°W, and GOES-15 (‘GOES-West’), at 135°W
- JMA’s MTSAT-2, at 145°E
- CMA’s FY-2D, at 86.5°E, and FY-2E, at 105°E (also selected meteorological products)

Meteorological products based on LEO satellite data are also disseminated:

- Microwave Sounder products from CMA’s FY-3B and FY-3C (only provided to National Met. Services)
- Level 1, 2 and 3 products derived from data of the MODIS instrument on NASA’s Terra & Aqua satellites
- EUMETSAT SSMIS products derived from sounder data of the DoD’s DMSP satellites F16 and F17
- Operational Geophysical Data Records (OGDRs) from the AltiKa instrument of ISRO/CNES’s SARAL mission.

The charts on the following slides show the availability of the data via EUMETCast.
The charts on this slide show the timely availability (as a percentage of expected) of image data originating from geostationary satellites operated by NOAA and JMA (Japan Meteorological Agency), as disseminated via EUMETCast.

Events which impacted availability:
None significant.
The charts here show the timely availability (as percentage of expected) of selected meteorological products generated from the data acquired by the Fengyun geostationary satellites operated by the China Meteorological Agency (CMA), as disseminated via EUMETCast.

Events which impacted availability:
July- Sept: For both FY-2D & FY-2E:
Fewer products due to eclipse-season
This slide presents charts which show the availability of data & products for LEO satellites operated by partner organisations, as disseminated via EUMETCast.

FY-3B and FY-3C: Level 1 data from microwave sounder instruments onboard Fengyun LEO satellites (made available only to National Met. Services and ECMWF). Availability shown as percentage of expected.

Events Which Impacted Availability:
None significant.

(Note that trial dissemination of data from FY-3C commenced on 18-Sept-2014)
This slide presents further charts showing the availability of certain LEO satellite products from partner organisations, as disseminated via EUMETCast. Availability shown in terms of total products disseminated /month and equivalent daily average/month.

MODIS: Level 1, 2 and 3 regional products derived from the MODIS instrument hosted on NASA's Terra and Aqua LEO satellites.

SSMIS Products: Extracted from SDR data from the ‘Special Sensor Microwave Imager Sounder’ microwave radiometer onboard the near-polar-orbiting, sun-synchronous DMSP satellites F16 and F17. Each product contains one orbit of data, comprising 4 BUFR component products: IMA, ENV, LAS and UAS.

Events which impacted availability:

20-23 Oct: NOAA network outage impacted SSMIS dataflow
This slide presents a chart showing the availability via EUMETCast of near-real-time Operational Geophysical Data Records (OGDRs), which are produced from the data from the ‘AltiKa’ Ka-band altimeter instrument of ISRO/CNES’s SARAL mission.

Each OGDR corresponds to one orbit of data, and availability is shown as a percentage of the scheduled passes.

Events which impacted availability:
6-10 October: Satellite safe-hold mode (no instrument data)
EUMETCast is EUMETSAT’s primary dissemination mechanism for the near real-time delivery of satellite data and products generated by the EUMETSAT Application Ground Segment. Third-party data and products from partner organisations are also delivered by the system, which is based on Digital Video Broadcast (DVB) technology. Up until the end of 2014, EUMETCast Europe has been based on the DVB-S standard, but has now been fully migrated to DVB-S2, which allows higher throughput, important in view of forthcoming services associated with new programmes.

For more information about EUMETCast and the services which it supports, please visit the ‘EUMETCast’ page on the EUMETSAT website (via ‘Data’ → ‘Data Delivery’).

The chart on the following slide shows the availability of the system for the last 12 months, which includes the half-year reporting period.
The chart here shows the monthly system availability for the 3 EUMETCast services covering Europe, Africa and South America respectively. Both EUMETCast Africa and EUMETCast South America systems are, in effect, extensions of EUMETCast Europe and thus the end-to-end system availability is calculated taking due account of the availability of EUMETCast Europe and of the respective extensions.

Events which impacted availability:

July: Network problem impacted EUMETCast S. America’s availability.

October: Sun colinearity affected EUMETCast Africa’s availability.

November: DVB-S2 feed test impacted EUMETCast Africa’s availability.

NOTE: The chart shows the statistics for EUMETCast Europe over DVB-S until the service ended officially on 31-Dec-2014. EUMETCast Europe over DVB-S2 ran in parallel from 14-Aug-2014 onwards, and became the only service as of 1-Jan-2015. Its availability during the period of parallel operations was as high as that of DVB-S.

EUMETCast ➔ Registered User Stations

The chart shows the trend of registrations of EUMETCast user stations.

The EUMETCast system had its 10th anniversary in April 2013.

The significant increase in stations in 2010 shown on the chart was largely a result of the migration of the users of Météo-France's RETIM system to EUMETCast.

Note: The number of registered user stations is larger than the number of users (shown on the next slide) due to some organisations possessing several user stations.
EUMETCast → Users Worldwide as of 31 December 2014

- 2782 users in Member States
- 4 users in Cooperating States
- 267 users in Africa
- 3312 users world-wide
The EUMETSAT Data Centre

EUMETSAT’s Data Centre archives all payload data acquired from EUMETSAT’s operational satellites and most of the products derived from that data.

The Data Centre allows registered users to request data and products from the archive by use of its online ‘self-service’ ordering mechanism and supplies the requested items via physical media and the Internet. It also allows ‘bulk orders’ for long time-periods of data and ‘standing orders’ for repeated delivery of data / products over specified time periods to be requested for special needs.

Charts on the following themes appear on the next 3 slides:

- Data Delivered: Total Volume versus Items
- Archive Orders versus Data To Be Retrieved
- Archive Order Delivery-Time Trends

Note that the charts do not include orders and deliveries of Climate Data Records (CDRs). Although the volumes of CDR deliveries are large (typically many TBs), they are not logged in the automated statistics provided by EUMETSAT’s Data Centre.
The EUMETSAT Data Centre → Data Delivered: Total Volume versus Items

The chart shows the number of items delivered monthly to the users by the Data Centre, and the corresponding monthly total volumes of data delivered, in the 3 years up to the end of the first half of 2014.

Items comprise images, products and ancillary files, and the statistics include all items supplied for all types of orders (regular, bulk and standing).

Notes:
(1) The peaks in delivery volumes in October and November 2012 were partly attributable to orders for newly-available Metop-B data.
(2) November saw a drop in deliveries due to problems encountered with a major software upgrade (see slide 9).
The chart shows the day-by-day profile of archive orders awaiting processing, against the related volume of data needing to be retrieved from the archive and processed to satisfy the queued orders.

The chart is based on observed daily maximum orders and estimated retrieval volumes that are now automatically recorded for each day of the year.

Notes:

(1) The exceptional peak seen in October/November 2012 was due to a large number of orders of few items being placed, many requiring media delivery, competing for system resources.

(2) November saw an increase in orders pending due to problems encountered with a major software upgrade (see slide 9).
The 3 charts show delivery-time ranges for Data Centre orders according to 3 categories of order size (Small, Medium & Large), for each of the half-year periods shown on the horizontal axis. The left-hand scales help to show the proportions of the total orders delivered in the indicated time ranges (note: standing orders not included).

The colour-coding for the delivery-time bands on each of vertical bars on each chart is as follows:

- > 1 month
- < 1 month
- < 1 week
- < 3 days
- < 1 day
- < 6 hours
- < 1 hour

The blue lines indicate the total orders per half year for each category (right-hand scales apply).

Total orders across all 3 categories were:
- 2012/H1: 4720 2012/H2: 6488
- 2013/H1: 9868 2013/H2: 6894
- 2014/H1: 6668 2014/H2: 6537
EUMETSAT contributes to climate monitoring and climate change analysis by reprocessing sensor data and products from Meteosat and Metop satellites held in its archive. Improved processing algorithms are applied to the data collected since the 1980’s, producing data records with improved overall consistency, with artefacts introduced during past satellite lifetimes corrected.

The following slide gives an overview of the new Climate Data Records made available in EUMETSAT’s archive in the reporting period.

For further information on EUMETSAT’s role in Climate Monitoring and the European Climate Projects in which it is involved, please see the ‘Monitoring Climate’ page whose link can be found on the ‘What We Do’ section under ‘About Us’ on the EUMETSAT website.
Climate Data Records (CDRs) production status at the end of the reporting period:

Metop-A AVHRR Atmospheric Motion Vectors
- Period: March 2007 – December 2012:
 - Rerun of CDR with updated processor is ongoing, evaluation will follow in 2015/H1.

Metop-A ASCAT L1
- Period: January 2007 – March 2014:
 - CDRs now validated and documented, and available on request (and have been delivered to ECMWF).

Metop-A GRAS L1 (Geometric Optics approach)
- Period: January 2007 – March 2014:
 - CDRs now produced and validated - available on request. Processing with wave optics approach to follow in 2015/H1.

Meteosat-8 and 9 SEVIRI Atmospheric Motion Vectors, Clear and All Sky Radiance
- Period: January 2004 – December 2011 (2012 onwards to follow):
 - CDRs now produced and undergoing evaluation.
EUMETSAT’s User Helpdesk provides support to the users of EUMETSAT’s services, handling enquiries, registrations, user feedback comments, problems experienced and enhancement requests.

This section includes charts on the following subjects:

- User interaction history of the last 10 years
- The countries and groups that gave rise to the largest numbers of user interactions in the reporting period
- Breakdown of those user interactions by category
The chart shows the number of user interactions handled by EUMETSAT’s User Helpdesk in each half-year of the last 10 years.

The next 2 slides focus on the user interactions for the current reporting period, in which a total of 1884 interactions were handled.
The chart shows the interactions in the second half of 2014 from:

(1) the 5 countries that gave rise to the largest numbers of interactions, and

(2) the split of the remainder of the interactions between other Member States, the Cooperating States and other countries.
The chart shows the numbers of user interactions in the second half of 2014 for:

- Service Enquiries (7 categories)
- Service Registrations
- User Feedback

Total interactions for the half-year came to **1884**.

Notes:
(1) ‘User Support Enquiries’ on the chart refer to enquiries related to service messages, web information and training.
(2) ‘User Feedback’ includes comments on our services and suggestions for improvement.
Please see the following on the EUMETSAT website, www.eumetsat.int:

- For new releases: from the menu-bar: ‘Data’ → ‘Related News’ on left, use ‘View All’ at the foot of the section

- For past releases: ‘Data’ → ‘Service Status’ (scroll down) → ‘Product History’

Details of all products can be found in EUMETSAT’s Product Navigator, accessible under ‘Quick Links’ from the website’s menu-bar.
Glossary

Special terms used in this report are explained in the table below (continued on several subsequent slides).

<table>
<thead>
<tr>
<th>Term</th>
<th>Context in which used</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-DCS</td>
<td>Metop-SNPP-NOAA GDS</td>
<td>ADVANCED DATA COLLECTION SYSTEM. Metop instruments contributing to Argos programme. Acquisition and transmission of signals from transmitters on buoys, ships, land sites and mobiles.</td>
</tr>
<tr>
<td>AMSU-A</td>
<td>Metop-SNPP-NOAA GDS</td>
<td>ADVANCED MICROWAVE SOUNDING UNIT-A. Multi-channel microwave radiometer used in combination with the HIRS instrument for measuring global atmospheric temperature profiles.</td>
</tr>
<tr>
<td>ASCAT</td>
<td>Metop-SNPP-NOAA GDS</td>
<td>ADVANCED SCATTEROMETER. C-band radar which measures near-surface wind speed and direction over the global ocean, and soil moisture.</td>
</tr>
<tr>
<td>ATOVS</td>
<td>Metop-SNPP-NOAA GDS</td>
<td>ADVANCED TIROS OPERATIONAL VERTICAL SOUNDERs. Calibrated radiance measurements from the AMSU-A, MHS and HIRS instruments are transformed into various parameters and assembled in the ATOVS L2 product.</td>
</tr>
<tr>
<td>AVHRR</td>
<td>Metop-SNPP-NOAA GDS</td>
<td>ADVANCED VERY HIGH RESOLUTION RADIOMETER. Multi-spectral imaging instrument which produces global visible, near-infrared and infrared imagery of clouds, oceans and land surfaces.</td>
</tr>
<tr>
<td>Colinearity</td>
<td>Meteosat</td>
<td>Sun, satellite and ground station come into alignment twice a year, giving rise to disruption of uplink and downlink signals, resulting in partial loss of some images.</td>
</tr>
<tr>
<td>DCP</td>
<td>Meteosat</td>
<td>A ‘Data Collection Platform’ measures and transmits environmental data which is relayed by Meteosat satellite first to EUMETSAT’s central operations, and then forwarded on to the DCP operator via direct, EUMETCast or GTS dissemination.</td>
</tr>
<tr>
<td>FES</td>
<td>Meteosat</td>
<td>Full-Earth Scanning, where the SEVIRI instrument scans the full Earth disc (c.f. RSS).</td>
</tr>
<tr>
<td>Term</td>
<td>Context in which used</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>-----------------------</td>
<td>--</td>
</tr>
<tr>
<td>Formats</td>
<td>Meteosat (IODC)</td>
<td>This refers to the High-Resolution Image (HRI) formats disseminated via Meteosat-7’s direct dissemination broadcasts.</td>
</tr>
<tr>
<td>GDS</td>
<td>Metop-SNPP-NOAA GDS</td>
<td>GLOBAL DATA SERVICE. This is EUMETSAT’s service delivering L0, L1 and L2 data and products based on instrument data acquired from the Metop, S-NPP and NOAA Low-Earth-Orbiting satellites.</td>
</tr>
<tr>
<td>GOME-2</td>
<td>Metop-SNPP-NOAA GDS</td>
<td>GLOBAL OZONE MONITORING EXPERIMENT-2. Scanning spectrometer instrument used to measure profiles and columnar amounts of ozone and other atmospheric constituents.</td>
</tr>
<tr>
<td>GRAS</td>
<td>Metop-SNPP-NOAA GDS</td>
<td>GNSS RECEIVER FOR ATMOSPHERIC SOUNDING. Radio occultation instrument for temperature profiling in the troposphere and stratosphere with high vertical resolution.</td>
</tr>
<tr>
<td>GTS</td>
<td>General</td>
<td>The ‘Global Telecommunications System’, established by the WMO, is used by national meteorological services to exchange meteorological data and products. See also ‘RMDCN’.</td>
</tr>
<tr>
<td>HIRS</td>
<td>Metop-SNPP-NOAA GDS</td>
<td>HIGH-RESOLUTION INFRARED RADIATION SOUNDER. Heritage atmospheric soundings of temperature and humidity in cloud-free conditions.</td>
</tr>
<tr>
<td>IASI</td>
<td>Metop-SNPP-NOAA GDS</td>
<td>INFRARED ATMOSPHERIC SOUNDING INTERFEROMETER. A multi-purpose sounding instrument used for enhanced atmospheric soundings of temperature, humidity and trace gases in cloud-free and partly-cloudy conditions, as well as surface temperature, cloud characteristics and surface emissivity.</td>
</tr>
<tr>
<td>Term</td>
<td>Context in which used</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------</td>
<td>--------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Level 0</td>
<td>Metop-SNPP-NOAA GDS</td>
<td>An instrument’s raw data which has been demultiplexed from the total set of data dumped from one orbit of the Metop satellite.</td>
</tr>
<tr>
<td>Level 1.0</td>
<td>Meteosat</td>
<td>The raw image data acquired from a Meteosat satellite and preprocessed at the ground station, which is then received by a EUMETSAT image-processing facility, to be geometrically rectified and radiometrically corrected.</td>
</tr>
<tr>
<td>Level 1.5</td>
<td>Meteosat</td>
<td>Level 1.0 image data that has been corrected for radiometric and geometric non-linearity and is accompanied by the appropriate ancillary information that allows the user to calculate the geographical position and radiance of any pixel.</td>
</tr>
<tr>
<td>Level 1A</td>
<td>Metop-SNPP-NOAA GDS</td>
<td>Instrument data in full resolution with radiometric and geometric (i.e. Earth location) calibration computed and appended but not applied.</td>
</tr>
<tr>
<td>Level 1B</td>
<td>Metop-SNPP-NOAA GDS</td>
<td>Calibrated, earth-located and quality-controlled product, in the original pixel location, packaged with ancillary, engineering and auxiliary data.</td>
</tr>
<tr>
<td>Level 1C</td>
<td>Metop-SNPP-NOAA GDS</td>
<td>In the case of the IASI spectra, Level 1B data after the application of the apodization function.</td>
</tr>
<tr>
<td>Level 1D</td>
<td>Metop-SNPP-NOAA Regional Data</td>
<td>For EARS-ATOVS, AVHRR derived cloud information on HIRS grid.</td>
</tr>
<tr>
<td>Level 2</td>
<td>Metop-SNPP-NOAA GDS</td>
<td>Earth-located values converted to geophysical parameters at the same spatial and temporal sampling as the Level 1B and 1C data.</td>
</tr>
</tbody>
</table>
Glossary (continued)

<table>
<thead>
<tr>
<th>Term</th>
<th>Context in which used</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MHS</td>
<td>Metop-SNPP-NOAA GDS</td>
<td>MICROWAVE HUMIDITY SOUNDER. 5-channel microwave instrument for atmospheric humidity sounding in all weather conditions.</td>
</tr>
<tr>
<td>NOAA</td>
<td>Metop-SNPP-NOAA GDS and Third-Party</td>
<td>National Oceanic and Atmospheric Administration (http://www.noaa.gov/)</td>
</tr>
<tr>
<td>Nominal RCs</td>
<td>Meteosat (0° SEVIRI)</td>
<td>SEVIRI repeat cycles consisting of geometrically and radiometrically-corrected data in all 12 channels, with less than 18 missing detector lines in the scanned Earth area for any given spectral channel (54 for HRV), where less than 12 of those lines (36 for HRV) are adjacent to each other.</td>
</tr>
<tr>
<td>‘On-Time’</td>
<td>All</td>
<td>The data or product has been generated or received ‘on-time’ at a specified location (e.g. at generation facility or EUMETCast user station respectively) within the relevant timeliness constraint.</td>
</tr>
<tr>
<td>OOP</td>
<td>Metop</td>
<td>‘Out-Of-Plane’ manoeuvre, i.e. one conducted with a Metop satellite in order to adjust the inclination of its orbit.</td>
</tr>
<tr>
<td>Perfect Formats</td>
<td>Meteosat (IODC)</td>
<td>High-Resolution Image (HRI) formats which have no missing lines and are based on the latest scanned image according to schedule.</td>
</tr>
<tr>
<td>Perfect Images</td>
<td>Meteosat (IODC)</td>
<td>Rectified images which are 100% complete.</td>
</tr>
</tbody>
</table>
Glossary (continued)

<table>
<thead>
<tr>
<th>Term</th>
<th>Context in which used</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PGF</td>
<td>On Metop performance charts</td>
<td>The Metop ‘Product Generation Facility’ is the part of the EPS CGS (Core Ground System) which generates Level 0 data and controls the generation of Level 1 and 2 products by the relevant PPFs (Product Processing Facilities).</td>
</tr>
<tr>
<td>Repeat Cycles (or RCs)</td>
<td>Meteosat (0° SEVIRI)</td>
<td>The period in which the MSG SEVIRI instrument performs one scan and then is repositioned ready for the next repeat cycle. A nominal repeat cycle (a scan of the entire Earth disc) has a duration of 15 minutes.</td>
</tr>
<tr>
<td>RMDCN</td>
<td>General</td>
<td>The ‘Regional Meteorological Data Communication Network’ is used by WMO Region VI to carry GTS traffic within Europe. See also ‘GTS’.</td>
</tr>
<tr>
<td>RSS</td>
<td>Meteosat (9.5° SEVIRI)</td>
<td>Rapid-Scan Service (for MSG), where the repeat cycle has a duration of only 5 minutes, covering the latitude range of 15 to 70°N.</td>
</tr>
<tr>
<td>SEM</td>
<td>Metop-SNPP-NOAA GDS</td>
<td>The ‘Space Environment Monitor’ consists of a pair of instruments which provide data to determine the intensity of the Earth's radiation belts and the flux of charged particles at the satellite's orbiting altitude.</td>
</tr>
<tr>
<td>SEU</td>
<td>Satellite or instrument outages</td>
<td>‘Single Event Upset’, the term used to refer to an effect on onboard electronics caused by charged particles (e.g. solar), possibly resulting in a switch-off of an electronic system.</td>
</tr>
<tr>
<td>SEVIRI</td>
<td>Meteosat Second Generation (MSG)</td>
<td>Spinning Enhanced Visible and Infra-Red Imager</td>
</tr>
</tbody>
</table>