GRASP: A versatile algorithm for characterizing the atmosphere

GRASP team:

O. Dubovik\(^1\), T. Lapyonok\(^1\), P. Litvinov\(^1\), M. Herman\(^1\),
F. Ducos\(^1\), D. Fuertes\(^1\), A. Holdak\(^1\), B. Torres\(^1\), Y. Derimian\(^1\), X. Huang\(^1\)

1- University of Lille-1, CNRS, France

A. Lopatin\(^1,2\), A. Chaikovsky\(^2\)

2- Institute of Physics, Minsk, Belarus

M. Spetsberger\(^3\), C. Federspiel\(^3\)

3- Catalysts GmbH, High Performance Computing, Linz, Austria
GRASP: Generalized Retrieval of Aerosol and Surface Properties
Current GRASP activities:

1. Satellite applications:
 - multi-viewing polarimeters: PARASOL
 - polar orbiting imagers: MERIS, AATSR, MISR (?), etc.;
 - geostationary imagers: GOCI/COMS, Sentinel-4, FCI.;
 - space borne lidars: CALIPSO (?)

2. Ground-based and airborne applications:
 - AERONET, lidar, lidar + AERONET;
 - spectral AOD, luna-photometer
Diverse applications of GRASP

- Nephelometer
- Sun-photometer
- Lidar
- AERONET PARASOL

Instrument design

Aerosol $\tau(\lambda, h)$, $\omega_0(\lambda, h), P(\lambda, \theta, h)$

vertical profiles

All modules are fully consistent !!!
General structure of the algorithm

FORWARD MODEL
Simulates observations $f(a^p)$ for a given set of parameters a^p

NUMERICAL INVERSION
Stat. optimized fitting of f^* by $f(a^p)$ under *a priori* constraints

- **Input:** Observations f^*
- **Retrieved parameters:**
 - a^p – describes optical properties of aerosol and surface
- **Observation definition:**
 - Viewing geometry, spectral characteristics; coordinates, etc
- **Inversion settings:**
 - description of error Δf^*; *a priori* constraints

INDEPENDENT MODULES !!!

$ap \rightarrow f(a^p) \rightarrow f^*$

$ap \rightarrow f(a^p) \rightarrow f^*$
Forward Model

Vector of retrieved parameters:
- \(a_{aer} \) - aerosol properties
- \(a_{surf} \) - surface properties

Aerosol single scattering
\(\tau(\lambda, h), \omega(\lambda, h), P(\lambda, \Theta, h) \)

Surface reflectance
BRDF, BPDF

Radiative Transfer:
\(F(\lambda, \Theta, \phi) \)

Simulated observations:
In situ, laboratory
PARASOL: the space–borne instrument most suitable for enhanced aerosol/surface characterization

PARASOL daily coverage image, March 3, 2013

INTEF

3 March 2013

Version: 02.04 Created: 20130304

for aerosol:

- (0.44, 0.49, 0.56, 0.67, 0.865, 1.02 μm) for gas absorption:
- (0.763, 0.765, 0.910 μm)

POLARIZATION (Q, U):

- (0.49, 0.67, 0.865 μm)

Swath: about 1600 km cross-track

Global coverage: every 2 days

1 pixel spatial resolution: 5.3km × 6.2km

Viewing directions: 16° (80° – 180°)
“independent” POLDER/PARASOL measurements:

GLOBAL: every 2 days SPATIAL RESOLUTION: 5.3km × 6.2km

VIEWS: \(N_\Theta = 16 \ (80^0 \leq \Theta \leq 180^0) \)

INTENSITY: \(N_\lambda^t = 6 \ (0.44, 0.49, 0.56, 0.67, 0.865, 1.02 \mu m) \)

POLARIZATION: \(N_\lambda^P = 3 \ (0.49, 0.67, 0.865 \mu m) \)

SINGLE OBSERVATION:
\[
(N_\lambda^t + N_\lambda^P) \times N_\Theta = (6 + 3) \times 16 = 144
\]
a lot !!! – as much as AERONET
AERONET retrievals are driven by 31 variables:

- $dV/d\ln r$ - size distribution (22 values)
- $n(\lambda)$ and $k(\lambda)$ - ref. index (4 values)
- C_{spher} (%) - spherical fraction (1 value)

Particle Size Distribution:

$0.05 \, \mu m \leq R (22 \text{ bins}) \leq 15 \, \mu m$

Complex Refractive Index at

$\lambda = 0.44; 0.67; 0.87; 1.02 \, \mu m$

Maritime

Smoke

Desert Dust
Aerosol representation in the algorithm:

Trapezium Approximation

\[
V_{\text{total}}(r) = \sum_{i=1,...,5} a_i V_i(r)
\]

Approximation by Log-Normals

\[
V_{\text{total}}(r) = \sum_{i=1,...,5} a_i V_i(r)
\]

Log-normal:

\[
\frac{dV(r)}{d \ln r} = \sum_{i=1,...,N} C_i e^{-\frac{(\ln r - \ln r_i)^2}{2\sigma_i^2}}
\]

- Size distribution is multi-component
- Each component may have same or different \(n(\lambda)\) and \(k(\lambda)\)

Twomey 1977

for **detailed** description of size distribution

for **moderately detailed** description of size distribution

for **bi-modal** size distribution

\(C_i, r_i, \sigma_i\) – retrieved
Concept of internal mixing of the aerosol components:

Host media: Water + Soluble

Soluble - Ammonium Nitrate with the properties depending on Relative Humidity (RH)

Insoluble Inclusions:
- Black Carbon
- Iron
- Other insoluble components ("quartz")

Maxwell Garnett’s Effective Medium Approximation:

describes the macroscopic properties of a medium based on the properties and the relative fractions of its components

Schuster et al. 2005, 2009
AERONET model of aerosol

Dubovik et al., 2006

spherical:

Randomly oriented spheroids:
(Mishchenko et al., 1997)
Mixing of particle shapes

\[\tau(\lambda) = C \int_{r_{\text{min}}}^{r_{\text{max}}} K_{\tau}^{\text{spherical}}(k; n; r)V(r)dr + (1-C) \int_{r_{\text{min}}}^{r_{\text{max}}} \int_{\varepsilon_{\text{min}}}^{\varepsilon_{\text{max}}} K_{\tau}^{\varepsilon}(k; n; r, \varepsilon)N(\varepsilon)d\varepsilon V(r)dr \]

ASSUMPTIONS:
- \(dV/d\ln r\) - volume size distribution is the same for both components;
- **non-spherical** - mixture of randomly oriented polydisperse spheroids;
- aspect ratio distribution \(N(\varepsilon)\) is fixed to the retrieved by Dubovik et al. 2006
Surface Reflectance

BRDF
1. **Rahman-Pinty-Verstraete** (RPV) model (Rahman et al., 1993)
 \[\rho_{sfc}(\theta_1, \varphi_1; \theta_2, \varphi_2) = \rho_0 M_i(k) F_{HG}(\Theta) H(h) \]
2. **Li – Ross** model (MODIS, etc) (Ross, 1981; Li, X., Strahler, 1992)

BPDF
1. **Maignan et al., (2009)**
 \[R_{p}^{\text{surf}}(\theta_s, \theta_v, \varphi_r) = \frac{B \exp(-\tan(\alpha_i)) \exp(-v)}{4(\mu_0 + \mu_i)} F_{\gamma}(\gamma) \] (B - empirical parameter)
2. **Nadal and Bréon, (1999)**
3. **Fresnel facet model for Gaussian surfaces** (Litvinov et al., 2011)

BRDF + BPDF
1. **Cox-Munk model** (ocean surface)
2. **Physical models for land surface reflection matrix** (Litvinov et al., 2012)
Single - Pixel Retrieval:

\[f_j^* - \text {PARASOL data:} \]

- Angular measurements (~15 angles) of
 - Intensity \((\lambda = 0.49; 0.67; 0.87; 1.02 \mu m) \)
 - Polarization \((\lambda = 0.49; 0.67; 0.87 \mu m) \)

\[a_j - \text {Parameters to be retrieved:} \]

- Aerosol properties:
 - size distribution; - real refractive index
 - imaginary refractive index; - particle shape, - height
- Surface properties (over land):
 - BRF parameters; - BPRF parameters

\[\begin{bmatrix} f_j^* \\ 0_j^* \end{bmatrix} = \begin{pmatrix} F_j & D_j \end{pmatrix} a_j + \begin{pmatrix} \Delta^m_j \\ \Delta^a_j \end{pmatrix} \]

A Priori Constraints limiting derivatives (e.g. Dubovik 2004) of
- for aerosols (e.g. in AERONET, Dubovik and King 2000):
 - aerosol size distribution variability over size range;
 - spectral variability of complex refractive index;
- for surface (e.g. in AERONET/satellite retrievals, Sinuyk et al. 2007):
 - spectral variability of BRF/ PBRF parameters.

Multi-term LSM statistically optimized Solution (Dubovik and King 2000, Dubovik 2004):

\[a_j = \left(F_j^T W_j^{-1} F_j + \gamma_j \Omega_j \right)^{-1} \left(F_j^T W_j^{-1} f_j^* \right) \]

, where \(\Omega_j = D_j^T D_j; W_j = \frac{1}{\varepsilon_f^2} c_f; \gamma_j = \frac{\varepsilon_f^2}{\varepsilon_a^2} \)
Aerosol/Surface. Difference in angular dependences

Surface contribution dominates, i.e. aerosol retrieval is very challenging

Litvinov et al.
The concept of multi-pixel retrieval

POLDER/PARASOL

Time-variability Constraints

Y-variability Constraints

X-variability Constraints

Multi-days observations

(t_3; x; y)

(t_2; x; y)

(t_1; x; y)
\[f_1^* = F_1 a + \Delta_1 \]
\[f_2^* = F_2 a + \Delta_2 \]

Independent !!!

\(a = (F^T C_1^{-1} F_1 + F^T C_2^{-1} F_2 + \ldots)^{-1}(F^T C_1^{-1} f_1^* + F^T C_2^{-1} f_2^* + \ldots) \)

Kalman Filter, “Optimal Estimation” by Rodgers, etc.

\[a = (F^T C_f^{-1} F + C_a^{-1})^{-1}(F^T C_f^{-1} f^* + C_a^{-1} a^*) \]

Phillips – Tikhonov – Twomey
Constrained Inversion

Multi-Term LSM
(e.g. see Dubovik and King 2000, Dubovik 2004, Dubovik et al. 2011)
Multi-Pixel Retrieval:

\[
\begin{pmatrix}
\begin{bmatrix} f_1^* \\ O_1^* \\ f_2^* \\ O_2^* \\ f_3^* \\ O_3^* \\ \vdots
\end{bmatrix}
& =
\begin{bmatrix} F_1 & 0 & 0 \\ D_1 & 0 & 0 \\ 0 & F_2 & 0 \\ 0 & D_2 & 0 \\ 0 & 0 & F_3 \\ 0 & 0 & D_3 \\
\end{bmatrix}
\begin{bmatrix} a_1 \\ a_2 \\ a_3
\end{bmatrix}
+
\begin{bmatrix} \Delta_1^q \\ \Delta_1^a \\ \Delta_2^q \\ \Delta_2^a \\ \Delta_3^q \\ \Delta_3^a
\end{bmatrix}
\end{pmatrix}
\]

Single-Pixel Data (PARASOL measurements and physical a priori constraints) are used by the same way as in Single-Pixel retrieval.

Multi-Pixel a priori constraints (e.g. Dubovik et al. 2008):
- limited **spatial** variability of each aerosol/surface parameter
- limited **temporal** variability of each aerosol/surface parameter

NOTE: degree of variability constraints (smoothness) can be different and adequately chosen for each parameter

Multi-term LSM Multi-Pixel Solution:

\[
\begin{bmatrix}
\begin{bmatrix} f_1^* \\ O_1^* \\ f_2^* \\ O_2^* \\ f_3^* \\ O_3^* \\ \vdots
\end{bmatrix}
& =
\begin{bmatrix} F_1 & 0 & 0 \\ D_1 & 0 & 0 \\ 0 & F_2 & 0 \\ 0 & D_2 & 0 \\ 0 & 0 & F_3 \\ 0 & 0 & D_3 \\
\end{bmatrix}
\begin{bmatrix} a_1 \\ a_2 \\ a_3
\end{bmatrix}
+
\begin{bmatrix} \Delta_1^q \\ \Delta_1^a \\ \Delta_2^q \\ \Delta_2^a \\ \Delta_3^q \\ \Delta_3^a
\end{bmatrix}
\end{pmatrix}
\]

, where

\[\Omega_x = D_x^T D_x; \quad \Omega_y = D_y^T D_y; \quad \Omega_t = D_t^T D_t; \quad \gamma_x = \frac{\varepsilon_f}{\varepsilon_x^2}; \quad \gamma_y = \frac{\varepsilon_f}{\varepsilon_y^2}; \quad \gamma_t = \frac{\varepsilon_f}{\varepsilon_t^2}\]
GRASP objectives:
Accurate, Versatile, Fast and Attractive for users.

- Inversion scheme:
 - search in continues space of solution;
 - optimization as Multi-term LSM;
 - adapted for synergy of observations: multi-pixel retrieval;

- Forward model:
 - applicable to diverse remote sensing observations;
 - very accurate: direct “on-line” computations;

- Software implementation:
 - advance programing: highly parallelized, using GPU;
 - easy accessible: open source aerosol retrieval code;
GRASP – user adapted library of routines

- Original system: Input files (sensor data files)
- Driver concept
Sequential version:
- read settings
 - settings file
- load data
 - sdata file
- GRASP
- organize output
 - output file

Parallelized version (MPI):
- read settings
 - settings file
- load data
 - sdata file
- GRASP
 - GRASP
 - GRASP
 - GRASP
 - GRASP
- organize output
 - output file

GPGPU: https://www.catalysts.cc/
User interface

- Yaml settings files (Standard format)
- Runtime help information
- Documentation
Sub-zones $N_x \times N_y$ are treated independently using "core inversion".

$N_x \times N_y = 100 \times 100$?

$N_t \gg 1$ (for simplicity)

$N_t = 1$? (for simplicity)
GRASP – is too slow?

Acceleration using GPU

Overall Timing Trends

Time[s] per Pixel

Speedup per Pixel

Now: ~ 0.1 sec per pixel, it is not over…
POLDER: LOA-2 (Dubovik) algorithm (BRDF)

Case 1

Case 2

Numerical tests
Retrieved seasonal variability of aerosol AOT

AOT(0.56)
Retrieved seasonal variability of aerosol SSA

SSA(0.56)
Retrieved seasonal variability of surface albedo
Surface Albedo (0.67)
Comparison with other aerosol products

PARASOL / GRASP
AOD555 Seasonal Average July-September 2008

PARASOL / fine mode operational

MODIS / Dark Target
MYD08_M3.051 Aerosol Optical Depth at 550 nm [units of 0.1]

MODIS / Deep Blue
MYD08_M3.051 Deep Blue AOD at 550 nm [units of 0.1]
Comparison with modeling and assimilation products

PARASOL / GRASP

(EMWF calculations – courtesy of A. Benedetti)

ECMWF forecast model corrected by 4D-Var assimilation of MODIS Dark Target and AATSR retrievals.
Desert dust inventories produced using satellite data

Ginoux et al. (Rev Geophys. 2012) approach.

TOMS + 10 years of MODIS DB data

TOMS + 1 year of PARASOL/GRASP data
Comparison of NDVI - Normalized Difference Vegetation Index

MODIS
MODIS NDVI. February, 2001

February, 2001

PARASOL/GRASP
January – March, 2008
Comparison of NDVI - Normalized Difference Vegetation Index

MODIS

MODIS NDVI. July, 2001

PARASOL / GRASP

July – September, 2008

July, 2001
GRASP retrieval. Regional maps (1800 x 1800 km). Mongu, SSA 670 nm

Small SSA correspond to biomass burning!
1 year of PARASOL data processed by ICARE were compared with AERONET data at 7 sites:

Saada, DMN_Maine_Soroa, Ilorin, Banizoumbou, Mongu, Agoufou and Beijing
1 year of PARASOL data compared with AERONET over Africa at 6 sites:

Aerosol AOD

AOD(440nm)

\[K = 0.896 \quad a = 0.83 \quad b = 0.16 \quad \text{RMSE} = 0.193 \]

AOD(870nm)

\[K = 0.885 \quad a = 0.74 \quad b = 0.11 \quad \text{RMSE} = 0.161 \]
1 year of PARASOL data compared with AERONET over Africa at 6 sites:

Angstrom Exponent

AE(675–870nm)

\[
\text{GRASP retrieval} = K \times \text{AERONET} + a \quad \text{with} \quad K = 0.838, \ a = 0.68, \ b = 0.32, \ \text{RMSE} = 0.345
\]

Aerosol SSA

SSA(870nm)

\[
\text{GRASP retrieval} = K \times \text{AERONET} + a \quad \text{with} \quad K = 0.783, \ a = 0.64, \ b = 0.36, \ \text{RMSE} = 0.044
\]
In this ICARE processing no “quality flag” was saved, i.e.
It is impossible to screen out poor retrieval

Illustration of “screening” effect:
Banizoumbou, Jan – Feb, 2008

ICARE results
Retrieval with screening

\[K = 0.896 \quad \alpha = 0.79 \quad b = 0.18 \quad \text{RMSE} = 0.179 \]

\[K = 0.989 \quad \alpha = 0.93 \quad b = 0.09 \quad \text{RMSE} = 0.079 \]
1 year of PARASOL data compared with AERONET

Ilorin –
complex mixture of dust and biomass burning

Angstrom Exponent

Aerosol SSA

\[AE(675-870\text{nm}) \]

\[SSA(870\text{nm}) \]

\[K=0.832 \quad a=0.90 \quad b=0.23 \quad \text{RMSE}=0.235 \]

\[K=0.795 \quad a=1.00 \quad b=0.02 \quad \text{RMSE}=0.039 \]
1 year of PARASOL data compared with AERONET

Beijing –
complex mixture of dust and urban pollution over urban surface with complex reflectance

Aerosol AOD

\[
\begin{align*}
K &= 0.921 \quad a &= 0.74 \quad b &= 0.18 \quad \text{RMSE} = 0.259 \\
K &= 0.910 \quad a &= 0.84 \quad b &= 0.09 \quad \text{RMSE} = 0.128
\end{align*}
\]
1 year of PARASOL data compared with AERONET

Ilorin –
complex mixture of dust and biomass burning

Angstrom Exponent

\[\text{AE}(675-870\text{nm}) \]

![Graph](image)

- \(k = 0.832 \)
- \(\alpha = 0.90 \)
- \(b = 0.23 \)
- RMSE = 0.235

Aerosol SSA

\[\text{SSA}(870\text{nm}) \]

![Graph](image)

- \(k = 0.795 \)
- \(\alpha = 1.00 \)
- \(b = 0.02 \)
- RMSE = 0.039
Banizoumbou, January – February, 2008

Aerosol Loading

Imaginary part of ref. ind
(∼ absorption)

AOD(440nm)

\[K = 0.989 \ a = 0.93 \ b = 0.09 \ RMSE = 0.079 \]

\[K = 0.795 \ a = 0.76 \ b = 0.00 \ RMSE = 0.001 \]
Parameters to retrieve:

AEROSOL:
- \(dV(r)/d\ln r\) (16 bins 0.07 to 10 \(\mu m\));
- \(n(\lambda)\)
- \(k(\lambda)\)
- Fraction of spherical particles
- Aerosol height

SURFACE:
- BRF (3 parameters for each \(\lambda\))
- BPRF (parameters for each)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>MERIS (N_{mes} = 7)</th>
<th>AATSR (N_{mes} = 8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N_r)</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>(N_\lambda)</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>(N_\lambda)</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>(N)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(N)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>47</td>
<td>32</td>
</tr>
</tbody>
</table>

TOTAL = 47

TOTAL = 32
HIGH POTENTIAL of Multi-Pixel approach!!!

\[N_{\text{total}}^{\text{retr}} = N_{\text{par}} N_x N_y N_t \]

9 Multi-pixel constraints

\[N_{\text{total}}^{\text{data}} \approx (N_{\text{mes}} + N_{\text{smooth}} + N_{\text{retr}}^t + N_{\text{retr}}^x + N_{\text{retr}}^y) N_x N_y N_t \]

7 33 = ((9-3) + (7-1) + (7-2) + (7-1) + (7-1) + (7-1) + (7-1))

MERIS - ?
MERIS : Aerosol + Surface

Numerical tests

Single-Pixel :

\[\tau(0.44) \]

Multi-Pixel :

\[\tau(0.44) \]
Numerical tests

Single-Pixel:

Multi-Pixel:

Surface Albedo
A dust cloud evolves over Nigeria

Scene from Jan. 28th to Feb. 2nd, centered over Banizoumbou, Niger.
AOT 675 retrieval from MERIS and PARASOL.
Banizoumbou/Niger
MERIS AOD 440 nm

PARASOL versus AERONET
Banizoumbou, January - February, 2008

\[
y = 0.03233 + 1.025x, \quad R = 0.9822
\]

\[
y = -0.052796 + 0.91589x, \quad R = 0.97614
\]
Sentinel - 4

Wavelength selection:

Preselected channels:

<table>
<thead>
<tr>
<th>Wave.</th>
<th>Purpose</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>323.85</td>
<td>Surface</td>
<td>O₃ contamination</td>
</tr>
<tr>
<td>342.45</td>
<td>Surface</td>
<td></td>
</tr>
<tr>
<td>374.00</td>
<td>Atm. Corr.</td>
<td></td>
</tr>
<tr>
<td>399.50</td>
<td>Atm. Corr.</td>
<td></td>
</tr>
<tr>
<td>430.50</td>
<td>Atm. Corr.</td>
<td></td>
</tr>
<tr>
<td>446.70</td>
<td>Surface</td>
<td></td>
</tr>
<tr>
<td>456.55</td>
<td>Atm. Corr.</td>
<td>Useful for surface</td>
</tr>
<tr>
<td>751.50</td>
<td>Atm. Corr.</td>
<td>Useful for surface</td>
</tr>
<tr>
<td>756.10</td>
<td>Surface</td>
<td></td>
</tr>
<tr>
<td>770.75</td>
<td>Surface</td>
<td>O₂ contamination</td>
</tr>
</tbody>
</table>

Required wavelengths:

- **Surface:** 320, 325, 340, 342, 374, 417, 450, 456, 756
- **Aerosol:** 756
East-Asia aerosol, AOD (440)

GOCI - The Geostationary Ocean Color Imager

COMS (Communication, Ocean, and Meteorological Satellite)

1800 x 1800 km

temporal diurnal variation of AOD
Beijing 1-10 April, 2013

GOCI + AERONET cloud-screened
Beijing 1-10 April, 2013
GOCI + AERONET cloud-screened

\[AOD(440\text{nm}) \]

\[AOD(870\text{nm}) \]

\[\begin{align*}
K &= 0.906 \\
a &= 0.66 \\
b &= 0.41 \\
RMSE &= 0.263
\end{align*} \]

\[\begin{align*}
K &= 0.853 \\
a &= 0.93 \\
b &= 0.01 \\
RMSE &= 0.126
\end{align*} \]

Aver. Value = -0.134 St.D. = 0.226 N=138

Aver. Value = 0.020 St.D. = 0.124 N=138
Multi-instrument Remote sensing:

Co-incident:

- CALIPSO (Satellite-based lidar)

Non co-incident:

- CALIPSO
- AERONET

Time-variability Constraints

X-variability Constraints

Multi-days observations

(t_1; x; y)

(t_2; x; y)

(t_3; x; y)
Synergy realized within GRASP for ground-based observations

GARRLiC/GRASP
Generalized Aerosol Retrieval from Radiometer and Lidar Combined data

- **Lidar + AERONET**
- **Columnar**
- **fine & coarse**

- $\frac{dV(r)}{d\ln r}$
- $n(\lambda), k(\lambda)$
- $\omega_0(\lambda), P_{ii}(\lambda, \Theta)$

Lopatin et al. 2013
Synergy provides new aerosol characteristics

Profiles of fine and coarse mode concentrations

Profiles of aerosol absorption
GRASP objectives:
Accurate, Versatile, Fast and Attractive for users.

- **Inversion scheme:**
 - search in continues space of solution;
 - optimization as Multi-term LSM;
 - adapted for synergy of observations: multi-pixel retrieval;

- **Forward model:**
 - applicable to diverse remote sensing observations;
 - very accurate: direct “on-line” computations;

- **Software implementation:**
 - advance programing: highly parallelized, using GPU;
 - easy accessible: open source aerosol retrieval code;
GRASP Status:

Core Algorithm is developed and performs well:

- uses very elaborated aerosol and RT models;
- inversion is based on rigorous statistical optimization;
- performs well in numerical test (Dubovik et al. 2011, Kokhanovsky et al. 2010);
- has a lot of flexibility

Issues and in progress aspects:

- Producing new PARASOL aerosol product;
- too long for satellite data:
 2 sec per pixel...(now → ???)
- open source GRASP code distributed by internet
GRASP Status:

Core Algorithm is developed and performs well:

- uses very elaborated aerosol and RT models;
- inversion is based on rigorous statistical optimization;
- performs well in numerical test (Dubovik et al. 2011, Kokhanovsky et al. 2010);
- has a lot of flexibility

Issues and in progress aspects:

- Producing new PARASOL aerosol product;
- too long for satellite data: 2 sec per pixel... (now → ???)
- open source GRASP code distributed by internet