The SM2RAIN algorithm developed a simple analytical relationship by inverting the soil-water equation to estimate rainfall through the knowledge of so…The SM2RAIN algorithm developed a simple analytical relationship by inverting the soil-water equation to estimate rainfall through the knowledge of soil moisture. The recently developed SM2RAIN-NWF algorithm offers an improvement in estimating rainfall by integrating the SM2RAIN algorithm and the net water flux (NWF) model. The Advanced Scatterometer (ASCAT) soil moisture products were used to estimate rainfall and evaluate the reliability of the SM2RAIN-NWF algorithm compared to the SM2RAIN on a national scale. Besides, the impact of Land cover-Soil texture-Climate (LSC) characteristics and the intensity of rainfall (four classes of intensity) on the performance of algorithms were discussed. Five performance metrics, including Correlation Coefficient (R), Kling–Gupta (KGE), Root Mean Square Error (RMSE), False Alarm Ration (FAR), and Probability of Detection (POD) were used to validate the estimated cumulative 5-, 14-, and 30-day rainfall. Furthermore, the effect of evapotranspiration (ET) and drainage terms were investigated in the performance of rainfall estimation through the SM2RAIN-NWF algorithm for the first time on a national scale. Results showed the rainfall estimations through the SM2RAIN-NWF algorithm improved approximately up to 7.5% in each accumulation (e.g. rainfall aggregation intervals (AGGR) 5 to 14 and 14 to 30) based on R and KGE indices. In addition, the SM2RAIN-NWF improved rainfall estimations up to 50% based on the KGE index in the southern half of Iran (arid and semi-arid climate) compared to the SM2RAIN estimates. The comprehensive evaluation and uncertainty analysis of rainfall estimations under the supervised classification of 11 LSC and 4 rainfall classes also showed the calibration of the SM2RAIN-NWF was highly affected by environmental and climatic circumstances. Uncertainty analysis showed the SM2RAIN-NWF algorithm can estimate rainfall more consistently in the five LSC classes namely 1) barren-clay loam-arid-desert, 2) barren-loam-arid-steppe, 3) barren-clay loam-arid-steppe, 4) urban-clay loam-arid-desert, and 5) urban-loam-arid-steppe. Similarly, estimating rainfall in the region with precipitation under 267 mm/year can be retrieved more reliably through the SM2RAIN-NWF algorithm. Results obtained from the ET analysis revealed an insignificant (more
This paper addresses long-term historical changes in solar irradiance in West Africa (3 to 20∘ N and 20∘ W to 16∘ E) and the implications for photovol…This paper addresses long-term historical changes in solar irradiance in West Africa (3 to 20∘ N and 20∘ W to 16∘ E) and the implications for photovoltaic systems. Here, we use satellite irradiance (Surface Solar Radiation Data Set – Heliosat, Edition 2.1 – SARAH-2.1) and temperature data from a reanalysis (ERA5) to derive photovoltaic yields. Based on 35 years of data (1983–2017), the temporal and regional variability as well as long-term trends in global and direct horizontal irradiance are analyzed. Furthermore, a detailed time series analysis is undertaken at four locations.
According to the high spatial resolution SARAH-2.1 data record (0.05∘×0.05∘), solar irradiance is largest (up to a 300 W m−2 daily average) in the Sahara and the Sahel zone with a positive trend (up to 5 W m−2 per decade) and a lower temporal variability (more
Khaykin, S. M.; Funatsu, B. M.; Hauchecorne, A.; Godin-Beekmann, S.; Claud, C.; Keckhut, P.; Pazmino, A.; Gleisner, H.; Nielsen, J. K.; Syndergaard, S.; Lauritsen, K. B.
Temperature changes in the lower and middle stratosphere during 2001–2016 are evaluated using measurements from GPS Radio Occultation (RO) and Advance…Temperature changes in the lower and middle stratosphere during 2001–2016 are evaluated using measurements from GPS Radio Occultation (RO) and Advanced Microwave Sounding Unit (AMSU) aboard the Aqua satellite. After downsampling of GPS-RO profiles according to the AMSU weighting functions, the spatially and seasonally resolved trends from the two data sets are in excellent agreement. The observations indicate that the middle stratosphere has cooled in the time period 2002–2016 at an average rate of −0.14 ± 0.12 to −0.36 ± 0.14 K/decade, while no significant change was found in the lower stratosphere. The meridionally and vertically resolved trends from high-resolution GPS-RO data exhibit a marked interhemispheric asymmetry and highlight a distinct boundary between tropospheric and stratospheric temperature change regimes matching the tropical thermal tropopause. The seasonal pattern of trend reveals significant opposite-sign structures at high and low latitudes, providing indication of seasonally varying change in stratospheric circulation.more
Based on the CLoud, Albedo and RAdiation dataset, AVHRR-based, version 2 (CLARA-A2), Tropical Rainfall Measuring Mission 3B43 (TRMM-3B43), and Europea…Based on the CLoud, Albedo and RAdiation dataset, AVHRR-based, version 2 (CLARA-A2), Tropical Rainfall Measuring Mission 3B43 (TRMM-3B43), and European Centre for Medium-Range Weather Forecasts Reanalysis v5 (ERA5) reanalysis data, the potential cloud precipitation capacity (PCPA) of typical regions in China is compared, and the relationship between impact factors and PCPA is discussed. Results have suggested that the Tarim Basin (TB) has scarce cloud water resources, while cloud water path (CWP) values are higher in South China (SC) and Sichuan Basin (SB) under the influence of the East Asian monsoon. Moreover, different typical regions of China exhibit varying dependencies on the ice water path (IWP) and liquid water path (LWP). There is a strong correlation between the IWP and precipitation in the Tibet Plateau (TP), Northeast China (NE), SC, and SB. The precipitation in TB demonstrates a more pronounced correlation with the LWP. Through a comparison of the correlation between PCPA and influencing factors in different typical regions of China, it is found that convective available potential energy (CAPE), surface latent heat flux (SLHF), surface sensible heat flux (SSHF), and 0–3 km relative humidity (RH) exhibit stronger correlation with PCPA than 2 m temperature (T2m) and 2–5 km vertical wind shear (SHEAR). Further investigation revealed that the joint effect of CAPE, RH, and SLHF has a pronounced effect on PCPA, particularly during spring and autumn. Additionally, the PCPA of TP exhibits significant dependency on the joint effect of these three influential factors. Furthermore, the ratio of LWP to IWP (RLI) also affects PCPA. In spring and autumn, the PCPA of TB and NC exhibits a positive correlation with RLI, whereas the PCPA of TP, SC, NE, and SB shows a negative correlation with RLI. In summer, the PCPA of TB and SC exhibits a notably negative correlation with RLI. This study deepens the understanding of the formation mechanism of cloud precipitation in typical regions of China, provides the basis for climate forecast and improves the accuracy of weather forecast.more
Abstract. In this paper, we exploit the first 10-year data record (2008–2017) of nitric acid (HNO3) total columns measured by the IASI-A/MetOp
infrare…Abstract. In this paper, we exploit the first 10-year data record (2008–2017) of nitric acid (HNO3) total columns measured by the IASI-A/MetOp
infrared sounder, characterized by an exceptional daily sampling and a good vertical sensitivity in the lower-to-mid stratosphere (around
50 hPa), to monitor the relationship between the temperature decrease and the observed HNO3 loss that occurs each year in the
Antarctic stratosphere during the polar night. Since the HNO3 depletion results from the formation of polar stratospheric clouds (PSCs),
which trigger the development of the ozone (O3) hole, its continuous monitoring is of high importance. We verify here, from the 10-year
time evolution of HNO3 together with temperature (taken from reanalysis at 50 hPa), the recurrence of specific regimes in the annual cycle
of IASI HNO3 and identify (for each year) the day and the 50 hPa temperature (“drop temperature”) corresponding to the onset of
strong HNO3 depletion in the Antarctic winter. Although the measured HNO3 total column does not allow for the uptake of HNO3 by
different types of PSC particles along the vertical profile to be differentiated, an average drop temperature of 194.2 ± 3.8 K, close
to the nitric acid trihydrate (NAT) existence threshold (∼ 195 K at 50 hPa), is found in the region of potential vorticity
lower than −10 × 10−5 Km2kg-1s-1 (similar to the 70–90∘ S equivalent latitude region during
winter). The spatial distribution and interannual variability of the drop temperature are investigated and discussed. This paper highlights the
capability of the IASI sounder to monitor the evolution of polar stratospheric HNO3, a key player in the processes involved in the depletion
of stratospheric O3.more
The aerosol–cloud–precipitation correlation has been a significant scientific topic, primarily due to its remarkable uncertainty. However, the possibl…The aerosol–cloud–precipitation correlation has been a significant scientific topic, primarily due to its remarkable uncertainty. However, the possible modulation of aerosol on the precipitation capacity of clouds has received limited attention. In this study, we utilized multi-source data on aerosol, cloud properties, precipitation, and meteorological factors to investigate the impact of aerosols on precipitation efficiency (PE) in the Sichuan Basin (SCB) and Yun-nan-Guizhou Plateau (YGP), where the differences between terrain and meteorological environment conditions were prominent. In the two study regions, there were significant negative correlations between the aerosol index (AI) and PE in spring, especially in the YGP, while the correlations between the AI and PE in other seasons were not as prominent as in spring. In spring, aerosol significantly inhibited both the liquid water path (LWP) and the ice water path (IWP) in the YGP, but negatively correlated with the IWP and had no significant relationship with the LWP in the SCB. Aerosol inhibited precipitation in the two regions mainly by reducing cloud droplet effective radius, indicating that warm clouds contributed more to precipitation in spring. The suppressive impact of aerosols on precipitation serving as the numerator of PE is greater than that of the cloud water path as the denominator of PE, resulting in a negative correlation between aerosol and PE. The AI–PE relationship is significantly dependent on meteorological conditions in the YGP, but not in the SCB, which may be related to the perennial cloud cover and stable atmosphere in the SCB. In the future, as air quality continues to improve, precipitation efficiency may increase due to the decrease in aerosol concentration, and of course, the spatio-temporal heterogeneity of the aerosol–cloud–precipitation relationship may become more significant.more