Author(s):
Eleftheratos, Kostas; Kouklaki, Dimitra; Zerefos, Christos
Publication title: Oxygen
2021
| Volume: 1 | Issue: 1
2021
Abstract:
Sixteen years (July 2003–July 2019) of ground-based measurements of total ozone in the urban environment of Athens, Greece, are analyzed in this work.… Sixteen years (July 2003–July 2019) of ground-based measurements of total ozone in the urban environment of Athens, Greece, are analyzed in this work. Measurements were acquired with a single Brewer monochromator operating on the roof of the Biomedical Research Foundation of the Academy of Athens since July 2003. We estimate a 16-year climatological mean of total ozone in Athens of about 322 DU, with no significant change since 2003. Ozone data from the Brewer spectrophotometer were compared with TOMS, OMI, and GOME-2A satellite retrievals. The results reveal excellent correlations between the ground-based and satellite ozone measurements greater than 0.9. The variability of total ozone over Athens related to the seasonal cycle, the quasi biennial oscillation (QBO), the El Nino Southern Oscillation (ENSO), the North Atlantic Oscillation (NAO), the 11-year solar cycle, and tropopause pressure variability is presented. more
Author(s):
Amega, Kokou; Laré, Yendoubé; Bhandari, Ramchandra; Moumouni, Yacouba; Egbendewe, Aklesso Y. G.; Sawadogo, Windmanagda; Madougou, Saidou
Publication title: Energies
2022
| Volume: 15 | Issue: 24
2022
Abstract:
A smart and decentralized electrical system, powered by grid-connected renewable energy (RE) with a reliable storage system, has the potential to chan… A smart and decentralized electrical system, powered by grid-connected renewable energy (RE) with a reliable storage system, has the potential to change the future socio-economic dynamics. Climate change may, however, affect the potential of RE and its related technologies. This study investigated the impact of climate change on photovoltaic cells’ temperature response and energy potential under two CO2 emission scenarios, RCP2.6 and 8.5, for the near future (2024–2040) and mid-century (2041–2065) in Togo. An integrated Regional Climate Model version 4 (RegCM4) from the CORDEX-CORE initiative datasets has been used as input. The latter platform recorded various weather variables, such as solar irradiance, air temperature, wind speed and direction, and relative humidity. Results showed that PV cells’ temperature would likely rise over all five regions in the country and may trigger a decline in the PV potential under RCP2.6 and 8.5. However, the magnitude of the induced change, caused by the changing climate, depended on two major factors: (1) the PV technology and (2) geographical position. Results also revealed that these dissimilarities were more pronounced under RCP8.5 with the amorphous technology. It was further found that, nationally, the average cell temperature would have risen by 1 °C and 1.82 °C under RCP2.6 and 8.5, in that order, during the 2024–2065 period for a-Si technology. Finally, the PV potential would likely decrease, on average, by 0.23% for RCP2.6 and 0.4% for RCP8.5 for a-Si technology. more
Author(s):
Polo, Jesús; García, Redlich J.
Publication title: Remote Sensing
2023
| Volume: 15 | Issue: 3
2023
Abstract:
Solar cadasters are excellent tools for determining the most suitable rooftops and areas for PV deployment in urban environments. There are several op… Solar cadasters are excellent tools for determining the most suitable rooftops and areas for PV deployment in urban environments. There are several open models that are available to compute the solar potential in cities. The Solar Energy on Building Envelopes (SEBE) is a powerful model incorporated in a geographic information system (QGIS). The main input for these tools is the digital surface model (DSM). The accuracy of the DSM can contribute significantly to the uncertainty of the solar potential, since it is the basis of the shading and sky view factor computation. This work explores the impact of two different methodologies for creating a DSM to the solar potential. Solar potential is estimated for a small area in a university campus in Madrid using photogrammetry from google imagery and LiDAR data to compute different DSM. Large differences could be observed in the building edges and in the areas with a more complex and diverse topology that resulted in significant differences in the solar potential. The RSMD at a measuring point in the building rooftop can range from 10% to 50% in the evaluation of results. However, the flat and clear areas are much less affected by these differences. A combination of both techniques is suggested as future work to create an accurate DSM. more
Author(s):
Friess, U; Kreher, K; Querel, R; Schmithnsen, H; Smale, D; Weller, R; Platt, U
Publication title: ATMOSPHERIC CHEMISTRY AND PHYSICS
2023
| Volume: 23 | Issue: 5
2023
Abstract:
The presence of reactive bromine in polar regions is a widespread phenomenon that plays an important role in the photochemistry of the Arctic and Anta… The presence of reactive bromine in polar regions is a widespread phenomenon that plays an important role in the photochemistry of the Arctic and Antarctic lower troposphere, including the destruction of ozone, the disturbance of radical cycles, and the oxidation of gaseous elemental mercury. The chemical mechanisms leading to the heterogeneous release of gaseous bromine compounds from saline surfaces are in principle well understood. There are, however, substantial uncertainties about the contribution of different potential sources to the release of reactive bromine, such as sea ice, brine, aerosols, and the snow surface, as well as about the seasonal and diurnal variation and the vertical distribution of reactive bromine. Here we use continuous long-term measurements of the vertical distribution of bromine monoxide (BrO) and aerosols at the two Antarctic sites Neumayer (NM) and Arrival Heights (AH), covering the periods of 2003-2021 and 2012-2021, respectively, to investigate how chemical and physical parameters affect the abundance of BrO. We find the strongest correlation between BrO and aerosol extinction (R=0.56 for NM and R=0.28 for AH during spring), suggesting that the heterogeneous release of Br-2 from saline airborne particles (blowing snow and aerosols) is a dominant source for reactive bromine. Positive correlations between BrO and contact time of air masses, both with sea ice and the Antarctic ice sheet, suggest that reactive bromine is not only emitted by the sea ice surface but by the snowpack on the ice shelf and in the coastal regions of Antarctica. In addition, the open ocean appears to represent a source for reactive bromine during late summer and autumn when the sea ice extent is at its minimum. A source-receptor analysis based on back trajectories and sea ice maps shows that main source regions for BrO at NM are the Weddell Sea and the Filchner-Ronne Ice Shelf, as well as coastal polynyas where sea ice is newly formed. A strong morning peak in BrO frequently occurring during summer and that is particularly strong during autumn suggests a night-time build-up of Br-2 by heterogeneous reaction of ozone on the saline snowpack in the vicinity of the measurement sites. We furthermore show that BrO can be sustained for at least 3 d while travelling across the Antarctic continent in the absence of any saline surfaces that could serve as a source for reactive bromine. more
Author(s):
Crawford, Alex D.; Rosenblum, Erica; Lukovich, Jennifer V.; Stroeve, Julienne C.
Publication title: Annals of Glaciology
2023
2023
Abstract:
The seasonal ice-free period in the Hudson Bay Complex (HBC) has grown longer in recent decades in response to warming, both from progressively earlie… The seasonal ice-free period in the Hudson Bay Complex (HBC) has grown longer in recent decades in response to warming, both from progressively earlier sea-ice retreat in summer and later sea-ice advance in fall. Such changes disrupt the HBC ecosystem and ice-based human activities. In this study, we compare 102 simulations from 37 models participating in phase 6 of the Coupled Model Intercomparison Project to the satellite passive microwave record and atmospheric reanalyses. We show that, throughout the HBC, models simulate an ice-free period that averages 30 d longer than in satellite observations. This occurs because seasonal sea-ice advance is unrealistically late and seasonal sea-ice retreat is unrealistically early. We find that much of the ice-season bias can be linked to a warm bias in the atmosphere that is associated with a southerly wind bias, especially in summer. Many models also exhibit an easterly wind bias during winter and spring, which reduces sea-ice convergence on the east side of Hudson Bay and impacts the spatial patterns of summer sea-ice retreat. These results suggest that, for many models, more realistic simulation of atmospheric circulation would improve their simulation of HBC sea ice. more
Author(s):
Zhao, F.; Liang, X.; Tian, Z.; Li, M.; Liu, N.; Liu, C.
Publication title: Geoscientific Model Development
2024
| Volume: 17 | Issue: 17
2024
Abstract:
An operational synoptic-scale sea ice forecasting system for the Southern Ocean, namely the Southern Ocean Ice Prediction System (SOIPS), has been dev… An operational synoptic-scale sea ice forecasting system for the Southern Ocean, namely the Southern Ocean Ice Prediction System (SOIPS), has been developed to support ship navigation in the Antarctic sea ice zone. Practical application of the SOIPS forecasts had been implemented for the 38th Chinese National Antarctic Research Expedition for the first time. The SOIPS is configured on an Antarctic regional sea ice–ocean–ice shelf coupled model and an ensemble-based localized error subspace transform Kalman filter data assimilation model. Daily near-real-time satellite sea ice concentration observations are assimilated into the SOIPS to update sea ice concentration and thickness in the 12 ensemble members of the model state. By evaluating the SOIPS performance in forecasting sea ice metrics in a complete melt–freeze cycle from 1 October 2021 to 30 September 2022, this study shows that the SOIPS can provide reliable Antarctic sea ice forecasts. In comparison with non-assimilated EUMETSAT Ocean and Sea Ice Satellite Application Facility (OSI SAF) data, annual mean root mean square errors in the sea ice concentration forecasts at a lead time of up to 168 h are lower than 0.19, and the integrated ice edge errors in the sea ice forecasts in most freezing months at lead times of 24 and 72 h maintain around 0.5 × 106 km2 and below 1.0 × 106 km2, respectively. With respect to the scarce Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) observations, the mean absolute errors in the sea ice thickness forecasts at a lead time of 24 h are lower than 0.3 m, which is in the range of the ICESat-2 uncertainties. Specifically, the SOIPS has the ability to forecast sea ice drift, in both magnitude and direction. The derived sea ice convergence rate forecasts have great potential for supporting ship navigation on a fine local scale. The comparison between the persistence forecasts and the SOIPS forecasts with and without data assimilation further shows that both model physics and the data assimilation scheme play important roles in producing reliable sea ice forecasts in the Southern Ocean. © copy 2024 Fu Zhao et al. more
Author(s):
Kern, Stefan
Publication title: REMOTE SENSING
2021
| Volume: 13 | Issue: 21
2021
Abstract:
The European Organisation for the Exploitation of Meteorological Satellites-Ocean and Sea Ice Satellite Application Facility-European Space Agency-Cli… The European Organisation for the Exploitation of Meteorological Satellites-Ocean and Sea Ice Satellite Application Facility-European Space Agency-Climate Change Initiative (EUMETSAT-OSISAF-ESA-CCI) Level-4 sea-ice concentration (SIC) climate data records (CDRs), named SICCI-25km, SICCI-50km and OSI-450, provide gridded SIC error estimates in addition to SIC. These error estimates, called total error henceforth, comprise a random, uncorrelated error contribution from retrieval and sensor noise, aka the algorithm standard error, and a locally-to-regionally correlated contribution from gridding and averaging Level-2 SIC into the Level-4 SIC CDRs, aka the representativity error. However, these CDRs do not yet provide an error covariance matrix. Therefore, correlation scales of these error contributions and the total error in particular are unknown. In addition, larger-scale SIC errors due to, e.g., unaccounted weather influence or mismatch between the actual ice type and the algorithm setup are neither well represented by the total error, nor are their correlation scales known for these CDRs. In this study, I attempt to contribute to filling this knowledge gap by deriving spatial correlation length scales for the total error and the large-scale SIC error for high-concentration pack ice. For every grid cell with > 90% SIC, I derive circular one-point correlation maps of 1000 km radius by computing the cross-correlation between the central 31-day time series of the errors and all other 31-day error time series within that circular area (disc) with 1000 km radius. I approximate the observed decrease in the correlation away from the disc's center with an exponential function that best fits this decrease and thereby obtain the correlation length scale L sought. With this approach, I derive L separately for the total error and the large-scale SIC error for every high-concentration grid cell, and map, present and discuss these for the Arctic and the Southern Ocean for the year 2010 for the above-mentioned products. I find correlation length scales are substantially smaller for the total error, mostly below ∼200 km, than the SIC error, ∼200 km to ∼700 km, in both hemispheres. I observe considerable spatiotemporal variability of the SIC error correlation length scales in both hemispheres and provide first directions to explain these. For SICCI-50km, I present the first evidence of the method's robustness for other years and time series of L for 2003-2010. more
Author(s):
Mousa, B. G.; Shu, Hong
Publication title: Earth and Space Science
2020
| Volume: 7 | Issue: 1
2020
Abstract:
The limited number of in situ stations of surface soil moisture (SM) in Africa creates a shortage in the validation of SM satellite products. Therefor… The limited number of in situ stations of surface soil moisture (SM) in Africa creates a shortage in the validation of SM satellite products. Therefore, this study investigates the performance of Soil Moisture Active Passive (SMAP), Soil Moisture and Ocean Salinity (SMOS), and the H113 product from the Advanced Scatterometer (ASCAT) on the regional scale over Africa through these goals: (1) validate of satellite SM products against in situ stations and SM data from the ERA-Interim atmospheric reanalysis product, (2) study the spatiotemporal variability of satellite SM products on the regional scale, and (3) evaluate the regional scale error patterns and investigate regions where the assimilation of satellites SM data may add improvement to ERA-Interim. Standard statistical metrics, hovmöller diagrams, and the Triple Collocation (TC) model were used to achieve these goals. Land cover data, Normalized Difference Vegetation Index, and precipitation data were used to interpret results. The validation results based on statistical metrics and TC indicate that over the desert and shrub, passive products showed better performance than ASCAT, while over moderate vegetation areas (grassland), SMAP had the best among SM products. Over high densely vegetated regions, ASCAT showed a high comparatively performance than passive products. The potential regions for assimilation of satellite data sets were selected to be over savannas and grassland regions for ASCAT, and over shrub and grassland regions for SMAP. In particular, SMAP and ASCAT SM data sets are considered more stable than SMOS for data assimilation and capturing the spatial distribution of SM on the regional scale over Africa. more
Author(s):
Kishcha, P.; Starobinets, B.
Publication title: Remote Sensing
2021
| Volume: 13 | Issue: 1
2021
Abstract:
Spatial heterogeneity in Dead Sea surface temperature (SST) was pronounced throughout the daytime, based on METEOSAT geostationary satellite data (200… Spatial heterogeneity in Dead Sea surface temperature (SST) was pronounced throughout the daytime, based on METEOSAT geostationary satellite data (2005–2015). In summer, SST peaked at 13 LT (local time), when SST reached 38.1◦ C, 34.1◦ C, and 35.4◦ C being averaged over the east, middle, and west parts of the lake, respectively. In winter, daytime SST heterogeneity was less pronounced than that in summer. As the characteristic feature of the diurnal cycle, the SST daily temperature range (the difference between daily maxima and minima) was equal to 7.2◦ C, 2.5◦ C, and 3.8◦ C over the east, middle, and west parts of the Dead Sea, respectively, in summer, compared to 5.3◦ C, 1.2◦ C, and 2.3◦ C in winter. In the presence of vertical water mixing, the maximum of SST should be observed several hours later than that of land surface temperature (LST) over surrounding land areas due to thermal inertia of bulk water. However, METEOSAT showed that, in summer, maxima of SST and LST were observed at the same time, 13 LT. This fact is evidence that there was no noticeable vertical water mixing. Our findings allowed us to consider that, in the absence of water mixing and under uniform solar radiation in the summer months, spatial heterogeneity in SST was associated with inhomogeneity in evaporation. Maximal evaporation (causing maximal surface water cooling) took place at the middle part of the Dead Sea, while minimum evaporation took place at the east side of the lake. © 2020 by the authors. Licensee MDPI, Basel, Switzerland. more
Author(s):
Zhao, Pengguo; Zhao, Wen; Yuan, Liang; Zhou, Xin; Ge, Fei; Xiao, Hui; Zhang, Peiwen; Wang, Yuting; Zhou, Yunjun
Publication title: Journal of Geophysical Research: Atmospheres
2023
| Volume: 128 | Issue: 2
2023
Abstract:
The effect of aerosol on liquid cloud microphysical properties over the Tibetan Plateau (TP) during the warm season is investigated by using aerosol i… The effect of aerosol on liquid cloud microphysical properties over the Tibetan Plateau (TP) during the warm season is investigated by using aerosol index (AI) and cloud property parameters data. Distinct differences in aerosol effect on liquid cloud microphysical properties have been found between the northern Tibetan Plateau (NTP) and southernTibetan Plateau (STP). The composite liquid cloud droplet effective radius liquid cloud droplet effective radius (LREF) anomalies for positive AI events are positive in the NTP and negative in the STP. In both NTP and STP, when the AI anomalies are positive, the LREF anomalies are also positive, which suggests that the increased aerosol loading reduces the solar radiation reaching the ground and thus enhances the atmospheric stability, which reduces the cloud base height and makes the liquid cloud area thicker, which gives cloud droplets more space to grow by collision-coalescence. This indicates that the aerosol radiative effect is not likely the reason causing the distinct differences of aerosol effects on liquid cloud properties between NTP and STP. Further analysis shows that in the STP, the LREF first increases and then decreases with the increase of AI, while in the NTP, the LREF always increases with the increase of AI, suggesting a spatial difference in aerosol microphysical effect. In the STP, the influence of aerosol on liquid clouds is mainly dependent on liquid water path and convective available potential energy, while in the NTP, the influence of aerosol on liquid cloud is more likely related to large aerosol particles. © 2023. American Geophysical Union. All Rights Reserved. more