The availability of microwave instruments on satellite platforms allows the retrieval of essential water cycle components at high quality for improved…The availability of microwave instruments on satellite platforms allows the retrieval of essential water cycle components at high quality for improved understanding and evaluation of water processes in climate modelling. HOAPS-3, the latest version of the satellite climatology "Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data" provides fields of turbulent heat fluxes, evaporation, precipitation, freshwater flux and related atmospheric variables over the global ice-free ocean. This paper describes the content, methodology and retrievals of the HOAPS climatology. A sophisticated processing chain, including all available Special Sensor Microwave Imager (SSM/I) instruments aboard the satellites of the Defense Meteorological Satellites Program (DMSP) and careful inter-sensor calibration, ensures a homogeneous time-series with dense data sampling and hence detailed information of the underlying weather situations. The completely reprocessed data set with a continuous time series from 1987 to 2005 contains neural network based algorithms for precipitation and wind speed and Advanced Very High Resolution Radiometer (AVHRR) based SST fields. Additionally, a new 85 GHz synthesis procedure for the defective SSM/I channels on DMSP F08 from 1988 on has been implemented. Freely available monthly and pentad means, twice daily composites and scan-based data make HOAPS-3 a versatile data set for studying ocean-atmosphere interaction on different temporal and spatial scales. HOAPS-3 data products are available via http://www.hoaps.org.more
In Nigeria, 86 million people lack electricity access, the highest number worldwide, predominantly in rural areas. Despite government efforts, constra…In Nigeria, 86 million people lack electricity access, the highest number worldwide, predominantly in rural areas. Despite government efforts, constrained budgets necessitate private investors, who, without adequate incentives, are hesitant to commit capital due to perceived high risks. This study identifies three existing incentive policies—concessionary loans, capital subsidy, and financing productive use equipment—aimed at promoting rural electrification in Nigeria. Employing geospatial and regulatory analyses, we evaluate their impact on electrification planning across 22,696 population clusters. While all incentives encourage mini-grids and stand-alone systems, results show varied impacts, predominantly favouring mini-grids. Under the baseline, grid extension is optimal for 66% of clusters, followed by mini-grids (27%) and stand-alone systems (7%). Concessionary loans boost mini-grid and Stand-Alone Systems shares by 10% and 5%, respectively. Capital subsidies increase the mini-grid share to 41%, surpassing concessional loans (37%). Financing productive equipment enhances Stand-Alone Systems and mini-grid shares to 15% and 43%. Incentives impact LCOE, CAPEX, and OPEX, with average LCOE reducing to 0.31 EUR/kWh (concessionary loans), 0.30 EUR/kWh (capital subsidy), and 0.27 EUR/kWh (financing productive use). Financing productive uses proves decisively more effective in lowering costs for mini-grids and stand-alone systems than loans or capital subsidies. The important policy implications of this study reinforce the need for tailored incentives for distinct electrification options.more
The downward shortwave radiation (DSR) is an important part of the Earth’s energy balance, driving Earth’s system’s energy, water, and carbon cycles. …The downward shortwave radiation (DSR) is an important part of the Earth’s energy balance, driving Earth’s system’s energy, water, and carbon cycles. Due to the harsh Antarctic environment, the accuracy of DSR derived from satellite and reanalysis has not been systematically evaluated over the transect of Zhongshan station to Dome A, East Antarctica. Therefore, this study aims to evaluate DSR reanalysis products (ERA5-Land, ERA5, MERRA-2) and satellite products (CERES and ICDR) in this area. The results indicate that DSR exhibits obvious monthly and seasonal variations, with higher values in summer than in winter. The ERA5-Land (ICDR) DSR product demonstrated the highest (lowest) accuracy, as evidenced by a correlation coefficient of 0.988 (0.918), a root-mean-square error of 23.919 (69.383) W m−2, a mean bias of −1.667 (−28.223) W m−2 and a mean absolute error of 13.37 (58.99) W m−2. The RMSE values for the ERA5-Land reanalysis product at seven stations, namely Zhongshan, Panda 100, Panda 300, Panda 400, Taishan, Panda 1100, and Kunlun, were 30.938, 29.447, 34.507, 29.110, 20.339, 17.267, and 14.700 W m−2, respectively; with corresponding bias values of 9.887, −12.159, −19.181, −15.519, −8.118, 6.297, and 3.482 W m−2. Regarding seasonality, ERA5-Land, ERA5, and MERRA-2 reanalysis products demonstrate higher accuracies during spring and summer, while ICDR products are least accurate in autumn. Cloud cover, water vapor, total ozone, and severe weather are the main factors affecting DSR. The error of DSR products is greatest in coastal areas (particularly at the Zhongshan station) and decreases towards the inland areas of Antarctica.more
At the beginning of August 2018, Portugal experienced a severe heat episode over a few days that consequently increased the probability of wildfire ev…At the beginning of August 2018, Portugal experienced a severe heat episode over a few days that consequently increased the probability of wildfire events. Due to the advection of an anomalous very hot and dry air mass, severe fire-prone meteorological conditions were forecasted mainly over southern Portugal, in the Monchique region. Together with the significant fuel amount accumulated since the last extreme wildfire in August 2003, all the unfavorable conditions were set to drive a severe fire over this region. The Monchique fire started on 3 August 2018, being very hard to suppress and lasting for seven days, with a burnt area of 27,000 ha. Regarding the need to have operational early warning tools, this work aims to evaluate the reliability of fire probabilistic products, up to 72 h ahead, together with the use of fire radiative power products, as support tools in fire monitoring and resource activities. To accomplish this goal, we used the fire probabilistic products of the Ensemble Prediction System, provided by the Copernicus Atmosphere Monitoring Service. Among available fire danger rating systems, the Fire Weather Index and the Fine Fuels Moisture Code of the Canadian Forest Fire Weather Index System were selected to assess the meteorological fire danger. The assessment of the fire intensity was based on the Fire Radiative Energy released, considering the Fire Radiative Power, delivered in near real-time, by EUMETSAT Land Surface Analysis Satellite Applications Facility. The exceptional fire danger over southern Portugal that favors the ignition of the Monchique fire and its severity was essential driven by two important factors: (i) the anomalous fire weather danger, before and during the event; (ii) the accumulated fuel amount, since the last severe event occurred in 2003, over the region. Results show that the selected fire probabilistic products described the meteorological fire danger observed well, and the LSA-SAF products revealed the huge amount of fire energy emitted, in line with the difficulties faced by authorities to suppress the Monchique fire.more